Search Results

You are looking at 41 - 50 of 216 items for

  • Keyword: FEM x
Clear All Modify Search
Open access

B. Machulec and W. Bialik

Based on the minimum Gibbs Free Enthalpy algorithm (FEM), model of the ferrosilicon smelting process has been presented. It is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. The condensed products of chemical reactions move from the top to the bottom, and the gas phase components move in the opposite direction. It can be assumed that in the model, the Reactor 1 corresponds to the charge zone of submerged arc furnace where heat is released as a result of resistive heating, and the Reactor 2 corresponds to the zones of the furnace where heat is produced by electric arc. Using the model, a series of calculations was performed for the Fe-Si-O-C system and was determined the influence of temperatures T1, T2 on the process. The calculation results show a good agreement model with the real ferrosilicon process. It allows for the determination of the effects of temperature conditions in charge zones and arc zones of the ferrosilicon furnace on the carbothermic silica reduction process. This allows for an explanation of many characteristic states in the ferrosilicon smelting process.

Open access

Mariusz Żółtowski, Bogdan Żółtowski and Leonel Castaneda

Abstract

This paper presents a methodology to evaluate the technical state of a Francis turbine by shaft rotor dynamic simulation. There are several rotor dynamic criteria that define the technical state of a turbo-machine. To feed the shaft rotor dynamic model this delivers the required information to accomplish the technical assessment. The numerical rotor dynamic model uses as input, the field forces obtained by the fluid-solid interaction analysis undertaken over the blades of the runner.

The rotor dynamic numerical simulations allow to determinate the record-in-time of the displacements of any point along the shaft. This information is relevant for diagnosis tasks, because it is possible to decompose it spectrally and to estimate the severity of the vibrations. Comparing the results of the numerical model against those obtained from machines that operates under normal conditions, it is possible to determinate the technical state of the turbo-machine. This allows studying the stability of the turbine working on several operation ranges.

A Francis turbine is a very complex machine that involves many physical phenomena of different nature. In this way, the hydraulic input forces needed by the rotor dynamic model should not be assumed but calculated directly from the fluid interaction over the turbine structure.

Open access

T. Pała and I. Dzioba

Abstract

The paper presents the results of two butt welded joints by conventional method. The welding process was performed using a variety of linear welding energy. The studies included experimental and computational part. In experimental studies determined the distribution of hardness and mechanical properties of the individual analyzed sections of welded joints. The data obtained were intended to determine the extent of zones in the welded joints that have certain strength characteristics. Also conducted uniaxial tensile tests of welded joints with the registration of displacement fields on the surface of specimens by means of Aramis video-system what the final result are images of strain fields map on the surface of welded joints. The resulting strain values were compared with the results of numerical computations FEM.

Open access

Jędrzej Żywicki, Paweł Dymarski, Ewelina Ciba and Czesław Dymarski

Abstract

The article presents the calculation and design stages of the TLP platform serving as a supporting construction of a 6 MW offshore wind turbine. This platform is designed to anchor at sea at a depth of 60 m. The authors presented the method of parameterization and optimization of the hull geometry. For the two selected geometry variants, the load and motion calculations of the platform subjected to wind, wave and current under 50-year storm conditions were performed. The maximum load on the structure was determined in these extreme storm conditions. For these loads, the MES calculation of the designed platform was performed for the selected variant. Authors have presented a method for calculating maximum wind, wave and current stresses on the structure during the worst storm in the past 50 years. For these loads the MES endurance calculations of the designed platform were made. Based on the results of these calculations, the required structural changes and recalculations have been made in succession to the structural design of the platform, which meets the design requirements and has the required ad hoc strength. The article contains stress analysis in „difficult“ nodes of constructions and discusses ways of solving their problems. The work is part of the WIND-TU-PLA project from the NCBR Research Agreement (Agreement No. MARTECII / 1/2014).

Open access

Z. Pater and J. Kazanecki

Abstract

This paper presents the results of FEM simulations of the rotary piercing process in which disc guiding devices of the Diescher type are used. During this process the material is formed by means of two skew rolls, two guiding devices, and the piercing plug mounted on the mandrel. The aim of the analysis was to determine the effect of the plug diameter, the plug advance, the feed angle and the diameter reduction on the piercing process. Nine cases of piercing with three different plugs used were analyzed. The effects of the basic process parameters on the tube shell diameter and the tool load were analyzed. The numerical results obtained using Simufact.Forming 10.0 were verified under experimental conditions in which the tube shell made from 100Cr6 bearing steel was pierced. The results of the FEM calculations show agreement with the experimental results.

Open access

P. Chyła, Z. Pater, J. Tomczak and P. Chyła

Abstract

This paper presents the research results of the balls rolling process according to the conventional and modified methods of rolling. Theoretical analysis was carried out by using numerical methods based on the Finite Element Method. The Simufact package version 10.0 were used for calculation. Simulations of balls rolling were carried out under conditions of 3D state of strain, taking into account the effect of thermal conditions occurring during forming. The study of the achieved results showed that the best rolling process parameters were obtained for the modified method, in which the feed material is heated up to 1150 °C. In this case, the rolling parameters such as: rolling force and torque as well as tool wear reached the smallest values.

Open access

A. Tofil, J. Tomczak and T. Bulzak

Abstract

The paper presents a selection of numerical and theoretical results of the cross wedge rolling process for producing stepped shafts made of aluminum alloy 6061. The numerical modeling was performed using the FEM-based Simufact Forming simulation software. In the simulations, we examined the kinematics of metal flow and determined the distribution patterns of effective strains, temperatures, axial stresses and the Cockroft-Latham damage criterion. Variations in the rolling forces were determined, too. The numerical results were verified experimentally using a universal rolling mill designed and constructed by the present authors. This machine can be used to perform such processes as cross wedge rolling, longitudinal rolling and round bar cropping. During the experiments, we examined process stability and finished product geometry and recorded the torques. The experimental results confirm that axisymmetric aluminum alloy shafts can be produced by cross wedge rolling with two rolls. Last but not least, the experiments served to evaluate the technological potential of the rolling mill used.

Open access

Roman Gogola, Justín Murín and Juraj Hrabovský

Abstract

This paper contains results of transient analysis of airflow around the ACSR power line cross-section in unsymmetric multi-span. The forces applied to the power line are obtained from CFD simulations, where the wind induced vibration is studied. Effect of these forces to the maximal displacement of the power line and the maximal mechanical forces in the points of attachment are studied and evaluated.

Open access

Martin Magura

Abstract

Gas pipelines pass through different topographies. Their stress level is influenced not only by gas pressure, but also by the adjacent soil, the thickness of any covering layers, and soil movements (sinking, landslides). The stress level may be unevenly spread over a pipe due to these causes. When evaluating experimental measurements, errors may occur. The value of the resistance reserve of steel can be adjusted by a detailed analysis of any loading. This reserve can be used in the assessment of a pipeline’s actual state or in reconstructions. A detailed analysis of such loading and its comparison with the simple theory of elasticity is shown in this article.

Open access

Piotr Szewczyk and Maciej Szumigała

Abstract

The paper presents exemplary static equilibrium paths of an element strengthened while under load. A steel-concrete composite beam was analyzed. The study discusses the effect of strengthening method, initial load values, welding stress, concrete shrinkage and introduction of additional control of distortion state on the course of static equilibrium path. Results calculated in numerical FEM simulation were verified with experimental data and were found to be consistent.