Search Results

1 - 2 of 2 items

  • Author: Zoran S. Ilić x
Clear All Modify Search
Postharvest Practices for Organically Grown Products

Summary

Quality of produce cannot be improved after harvest, only maintained. Postharvest handling depends on the specific conditions of production, season, method of handling, and distance to market. Under organic production, growers harvest and market their produce at or near the peak ripeness more commonly than in many conventional systems. Organic production often includes more specialty varieties whose shelf life and shipping traits are reduced or even inherently poor. Harvesting and handling techniques that minimize injury to the commodity, as well as increased care with field and packinghouse sanitation, (chlorine, ozone, calcium hypochlorite, sodium hypochlorite and chlorine dioxide, acetic acid, peroxyacetic acid, vinegar, ethyl alcohol, hydrogen peroxide, etc.) during postharvest processes are vital components of a postharvest management plan for organic products. Sodium carbonate, sodium bicarbonate, and physical treatments such as heat treatments (as hot water treatment or dips, short hot water rinsing and brushing or hot air) can significantly lower the disease pressure on the harvested commodities. These sanitation practices are very easy to implement in the organic food production chain. They start in the field and continue during harvesting, sorting, packing, and transportation and continue even in the consumer’s home. All those treatments reduce rot development, provide quarantine security, and preserve fruit quality during cold storage and shelf life. In addition, the use chitosan, propolis, methyl jasmonate, essential oils, carnuba wax, biocontrol agents and modified atmosphere packaging can also reduce decay development during prolonged storage. All these treatments can be applied alone or in combination with each other in order to improve decay control after harvest and provide a healthy and safe product to the consumer. The aim of this chapter is to shed more light on the latest information on permitted treatments for organic products and on the possible mode-of-action of these treatments. This chapter summarizes technologies developed over the past five years that explore special physical treatments applied either directly, or in combination with other means to control rot development and insect infestation on fresh produce.

Open access
Color Shade Nets Improve Vegetables Quality at Harvest and Maintain Quality During Storage

Summary

The photoselective, light-dispersive shade nets can be used as an alternative to protect crops from adverse environmental conditions such as; excessive solar radiation, heat and drought stress, wind and hail, birds, flying pests, thus improving crop’s production, yield and quality. The physiological parameters discussed in the review include: vegetable growth parameters (leaf area, leaf chlorophyll), tissue structure, fruit ripening, physiological disorders, pest and disease incidence, fruit quality parameters (soluble solids content and titratable acidity), bioactive compounds (antioxidant activity, ascorbic acid, carotenoid and flavonoid contents) and aroma volatile compounds at harvest. Also, it is evident in the reviewed literature that light quality influences the biosynthesis, accumulation and retention of vegetable phytochemicals, as well as the decay development during storage. These new strategies to modulate light quality should be conveyed to vegetable producing farmers, thus allowing them to preserve the freshness and post-harvest quality of vegetables for an extended period of time, and to meet the consumers demand for vegetables with high nutritional value all year round. Research on light manipulation in horticultural systems is necessary for a sustainable and market-oriented open field and greenhouse vegetable production in the future.

Open access