Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Zoltan Pécskay x
Clear All Modify Search
Open access

Zoltán Pécskay, Ioan Seghedi, Marinel Kovacs, Alexandru Szakács and Alexandrina Fülöp

Geochronology of the Neogene calc-alkaline intrusive magmatism in the "Subvolcanic Zone" of the Eastern Carpathians (Romania)

The Poiana Botizei-Ţibleş-Toroiaga-Rodna-Bârgâu intrusive area (PBTTRB), northwest Romania, known as the "Subvolcanic Zone", is located between the Gutâi (NW) and Câlimani (SE) volcanic massifs. It consists of rocks displaying a wide range of compositions and textures: equigranular or porphyritic with holocrystalline groundmass (gabbro-diorites, diorites, monzodiorites and granodiorites), and/or porphyritic with fine holocrystalline or glassycryptocrystalline groundmass, similar with effusive rocks: basalts, basaltic andesites, andesites, dacites and rhyolites. The time-span of intrusive rocks emplacement is similar with the nearest calc-alkaline volcanic rocks from Gutâi (NW) and Câlimani (SE) massifs. They are represented by stocks, laccoliths, dykes and sills typical for an upper crustal intrusive environment. In the absence of biostratigraphic evidence, a comprehensive K-Ar study of intrusive rocks using whole rock samples, groundmass and monomineral fractions (biotite, hornblende) has been carried out in order to understand the magmatic evolution of the area. The oldest K-Ar ages recorded in the analysed rocks are close to 11.5 Ma and magmatism continued to develop until about 8.0 Ma. The inception of intrusion emplacement in the PBTTRB is coeval with intrusive activity spatially related to volcanism within the neighbouring Gutâi and Câlimani massifs. However, its culmination at ca. 8 Ma ago is younger than the interruption of this activity at ca. 9.2 Ma in Gutâi and Câlimani Mts where intrusive activity resumed for ca. 1 Myr. These circumstances strongly suggest that the geodynamic evolution of the area controlled the development of both volcanic and intrusive activity and their reciprocal relationships. The overall geological data suggest that in the PBTTRB intra-lithospheric transpressional-transtensional tectonic processes controlled the generation and emplacement of intrusive bodies between ca. 12-8 Ma.

Open access

Krzysztof Birkenmajer, Krzysztof Krajewski, Zoltán Pécskay and Marek Lorenc

K-Ar dating of basic intrusions at Bellsund, Spitsbergen, Svalbard

Nine samples of basic (dolerite, gabbro) intrusions collected at Bellsund, South Spitsbergen, have been K-Ar dated. Three dates, between 87.8 and 102.9 Ma, obtained from dolerite sills which intrude Carboniferous and Permian deposits in Van Keulenfjorden point to a Cretaceous age of intrusive activity (Diabasodden Suite). The K-Ar dates obtained from dolerite and gabbro which intrude Upper Proterozoic metasedimentary terrane of Chamber-lindalen form two groups: the dates between 97.1 and 178.6 Ma point to a Mesozoic age of the intrusions (Diabasodden Suite); the dates from a tectonized gabbroid (280.9-402.0 Ma) might point to a Late Palaeozoic age of the intrusion. No K-Ar dates which would indicate a Proterozoic age of the basic intrusions were obtained.

Open access

Vladimír Cajz, Vladislav Rapprich, Vojtěch Erban, Zoltan Pécskay and Miroslav Radoň

Late Miocene volcanic activity in the České středohoří Mountains (Ohře/Eger Graben, northern Bohemia)

First occurrences of superficial bodies of Late Miocene volcanic activity were found in the western part of the České středohoří Volcanic Complex (CSVC) and extended our knowledge of its volcanostratigraphy. Their K-Ar ages (9.59, 9.61 and 11.36 Ma) correspond to the age of alkaline basaltic rocks of the youngest known Intrusive Suite of this area. Unlike the previously known subvolcanic bodies of this system, the newly observed bodies are represented by superficial products: two scoria cones with remnants of lava flows and one exclusive lava flow produced from a lava cone. The magmas forming all three occurrences are basanitic. Their primitive chemical composition Sr (0.70347-0.70361) and Nd (0.51279-0.51284) isotope ratios are similar to the products of the first and third volcanic formation of the CSVC. The proved existence of superficial products of the youngest volcanic formation, together with clear superposition relations to sedimentary formations and the chemical character of the youngest magmas in the central part of the Ohře (Eger) Graben support the stratigraphic scheme of volcanic activity in the České středohoří Mts. The eruptive style of the youngest formation volcanoes was purely magmatic (Strombolian) with no phreatic influence.

Open access

Anna Mozer, Zoltán Pécskay and Krzysztof P. Krajewski

Abstract

Radiometric and geochemical studies were carried out at Red Hill in the southern part of King George Island (South Shetland Islands, northern Antarctic Peninsula) on the Bransfield Strait coast. The rock succession at Red Hill has been determined to represent the Baranowski Glacier Group that was previously assigned a Late Cretaceous age. Two formations were distinguished within this succession: the lower Llano Point Formation and the upper Zamek Formation. These formations have stratotypes defined further to the north on the western coast of Admiralty Bay. On Red Hill the Llano Point Formation consists of terrestrial lavas and pyroclastic breccia; the Zamek Formation consist predominantly of fine to coarse tuff, pyroclastic breccia, lavas, tuffaceous mud-, silt-, and sandstone, locally conglomeratic. The lower part of the Zamek Formation contains plant detritus (Nothofagus, dicotyledonous, thermophilous ferns) and numerous coal seams (vitrinitic composition) that confirm the abundance of vegetation on stratovolcanic slopes and surrounding lowlands at that time. Selected basic to intermediate igneous rocks from the succession have been analysed for the whole-rock K-Ar age determination. The obtained results indicate that the Red Hill succession was formed in two stages: (1) from about 51–50 Ma; and (2) 46–42 Ma, i.e. during the Early to Middle Eocene. This, in combination with other data obtained from other Baranowski Glacier Group exposures on western coast of Admiralty Bay, confirms the recently defined position of the volcano-clastic succession in the stratigraphic scheme of King George Island. The new stratigraphic position and lithofacies development of the Red Hill succession strongly suggest its correlation with other Eocene formations containing fossil plants and coal seams that commonly occur on King George Island.

Open access

Marinel Kovacs, Zoltán Pécskay, Alexandrina Fülöp, Maria Jurje and Oscar Edelstein

Abstract

Earlier geological work in the Oaș-Gutâi Mts (OG), Eastern Carpathians, has revealed the extensive presence of shallow subvolcanic intrusive bodies, both exposed on the surface and covered by Paleogene-Neogene sedimentary sequences and Neogene volcanic formations. This study is based on detailed mapping and sampling of the OG Neogene intrusive magmatic rocks. Thirty seven representative intrusions (sills, dykes, microlaccoliths, etc.) were selected for radiometric dating. These intrusions show a wide variety of petrographic rock-types: from microgabbros to microgranodiorites and from basalts to andesites. However, the intrusions consist of typical calc-alkaline, medium-K rocks, similar to the volcanic rocks which outcrop in the same areas. The K-Ar age determinations on whole-rock samples of intrusions yielded ages between 11.9 Ma and 7.0 Ma (from Late Sarmatian to Middle Pannonian). The results are in good agreement with the common assumption, based on the biostratigraphic and geological data, that large volumes of intrusions have formed during the paroxysm of the intermediate volcanic activity in the OG. Except for the Firiza basalt intrusive complex of the Gutâi Mts (8.1-7.0 Ma), the OG intrusions show similar K-Ar ages as the intrusions of the “Subvolcanic Zone” and Călimani Mts from Eastern Carpathians. The timing of the OG intrusive magmatism partially overlaps with the timing of the intrusive magmatic activity in the Eastern Moravia and Pieniny Mts. The systematic radiometric datings in the whole OG give clear evidence that the hydrothermal activity related to the epithermal systems always postdates intrusion emplacement.

Open access

Alexandru Szakács, Zoltán Pécskay, Lóránd Silye, Kadosa Balogh, Daniela Vlad and Alexandrina Fülöp

On the age of the Dej Tuff, Transylvanian Basin (Romania)

The Dej Tuff is an important stratigraphic marker in the Transylvanian Basin. However, its Early Badenian age is known only on biostratigraphical grounds so far. A number of radiometric dating techniques including K-Ar, Ar-Ar and fission-track have been used in order to constrain more precisely its age, allowing the calibration of the Transylvanian Basin's evolutionary models. Although individual dating methods could not provide a unique, reliable and accurate radiometric age, comparison and evaluation of multiple methods gives 14.8-15.1 Ma as the most likely formation age of the Dej Tuff.

Open access

Zsolt Benkó, Ferenc Molnár, Marc Lespinasse, Kjell Billström, Zoltán Pécskay and Tibor Németh

Abstract

A combined fluid inclusion, fluid inclusion plane, lead isotope and K/Ar radiometric age dating work has been carried out on two lead-zinc mineralizations situated along the Periadriatic-Balaton Lineament in the central part of the Pannonian Basin, in order to reveal their age and genetics as well as temporal-spatial relationships to other lead-zincfluorite mineralization in the Alp-Carpathian region. According to fluid inclusion studies, the formation of the quartzfluorite- galena-sphalerite veins in the Velence Mts is the result of mixing of low (0-12 NaCl equiv. wt. %) and high salinity (10-26 CaCl2 equiv. wt. %) brines. Well-crystallized (R3-type) illite associated with the mineralized hydrothermal veins indicates that the maximum temperature of the hydrothermal fluids could have been around 250 °C. K/Ar radiometric ages of illite, separated from the hydrothermal veins provided ages of 209-232 Ma, supporting the Mid- to Late-Triassic age of the hydrothermal fluid flow. Fluid inclusion plane studies have revealed that hydrothermal circulation was regional in the granite, but more intensive around the mineralized zones. Lead isotope signatures of hydrothermal veins in the Velence Mts (206Pb/204Pb = 18.278-18.363, 207Pb/204Pb = 15.622-15.690 and 208Pb/204Pb = 38.439-38.587) and in Szabadbattyán (206Pb/204Pb = 18.286-18.348, 207Pb/204Pb = 15.667-15.736 and 208Pb/204Pb = 38.552-38.781) form a tight cluster indicating similar, upper crustal source of the lead in the two mineralizations. The nature of mineralizing fluids, age of the fluid flow, as well as lead isotopic signatures of ore minerals point towards a genetic link between epigenetic carbonate-hosted stratiform-stratabound Alpine-type lead-zinc-fluorite deposits in the Southern and Eastern Alps and the studied deposits in the Velence Mts and at Szabadbattyán. In spite of the differences in host rocks and the depth of the ore precipitation, it is suggested that the studied deposits along the Periadriatic-Balaton Lineament in the Pannonian Basin and in the Alps belong to the same regional scale fluid flow system, which developed during the advanced stage of the opening of the Neo-Tethys Ocean. The common origin and ore formation process is more evident considering results of large-scale palinspastic reconstructions. These suggest, that the studied deposits in the central part of the Pannonian Basin were located in a zone between the Eastern and Southern Alps until the Early Paleogene and were emplaced to their current location due to northeastward escape of large crustal blocks from the Alpine collision zone

Open access

Kyriaki Pipera, Antonis Koroneos, Triantafyllos Soldatos, Zoltán Pécskay and Georgios Christofides

Abstract

New K/Ar mineral ages of thirty nine samples (biotite, muscovite, K-feldspar) from the two-mica granodiorite to granite and leucogranite of the northern part of the Sithonia Plutonic Complex (Chalkidiki, Greece) are given in the present study. These data along with existing Rb/Sr mica and U/Pb zircon ages are used to investigate the thermal history of the plutonic complex and shed light on the process that affected it, and caused discordant Rb/Sr and K/Ar mineral ages. The K/Ar mineral dating yielded ages ranging from 38 to 49 Ma for muscovites, 32 to 47 Ma for biotites and 37 to 43 Ma for K-feldspars, respectively. The comparison of the K/Ar, Rb/Sr and U/Pb mineral ages and the closure temperatures of the different isotopic systems for the different minerals indicate a rapid cooling rate for the Sithonia pluton. The latter supports the hypothesis that the pluton was formed in a post orogenic extensional regime. Moreover, the K/Ar mineral isochrones indicate that a reheating of the pluton took place before 37 Ma and partially rejuvenated the K/Ar and Rb/Sr isotopic system of the minerals

Open access

Vladimír Cajz, Petr Schnabl, Zoltan Pécskay, Zuzana Skácelová, Daniela Venhodová, Stanislav Šlechta and Kristýna Čížková

Abstract

This paper presents the results of a paleomagnetic study carried out on Plio-Pleistocene Cenozoic basalts from the NE part of the Bohemian Massif. Paleomagnetic data were supplemented by 27 newly obtained K/Ar age determinations. Lavas and volcaniclastics from 6 volcanoes were sampled. The declination and inclination values of paleomagnetic vectors vary in the ranges of 130 to 174 and -85 to -68° for reversed polarity (Pleistocene); or 345 to 350° and around 62° for normal polarity (Pliocene). Volcanological evaluation and compilation of older geophysical data from field survey served as the basis for the interpretation of these results. The Pleistocene volcanic stage consists of two volcanic phases, fairly closely spaced in time. Four volcanoes constitute the Bruntál Volcanic Field; two others are located 20 km to the E and 65 km to the NW, respectively. The volcanoes are defined as monogenetic ones, producing scoria cones and lavas. Exceptionally, the largest volcano shows a possibility of remobilization during the youngest volcanic phase, suggested by paleomagnetic properties. The oldest one (4.3-3.3 Ma), Břidličná Volcano, was simultaneously active with the Lutynia Volcano (Poland) which produced the Zálesí lava relic (normal polarity). Three other volcanoes of the volcanic field are younger and reversely polarized. The Velký Roudný Volcano was active during the Gelasian (2.6-2.1 Ma) and possibly could have been reactivated during the youngest (Calabrian, 1.8-1.1 Ma) phase which gave birth to the Venušina sopka and Uhlířský vrch volcanoes. The reliability of all available K-Ar data was evaluated using a multidisciplinary approach.