Search Results

You are looking at 1 - 2 of 2 items for

  • Author: ZhiLiang Xu x
Clear All Modify Search
Open access

Li Bing-jie, Zhao Jia-hong, Wang Xu, Mohamode Amuer and Wang Zhi-liang

Abstract

As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

Open access

Xiaoli Yao, Wen Wei, Juanjuan Li, Lijun Wang, ZhiLiang Xu, Yingwen Wan, Kaiyang Li and Shengrong Sun

Abstract

Background: Many breast-imaging techniques have been developed as primary clinical methods for identifying early-stage breast cancers and differentiating them from benign breast tumors. For the large population of China, any screening method that is rapid, economical, and accurate is worthy of evaluation.

Objective: To compare the effectiveness of mammography, color Doppler ultrasonography, and far-infrared thermography in the screening and early diagnosis of breast cancer.

Methods: Data from 2036 women with breast disease between January 2007 and May 2011 were included in this study. All patients underwent mammography, ultrasonography, and far-infrared thermography imaging. The diagnostic accuracy of the three methods was determined using postoperative pathological results as the diagnostic criterion standard.

Results: There were 480 patients found to have breast malignancies on pathological examination. The lesion diameter was <2 cm in 853 cases. Among them, breast cancer was found in 73 patients and carcinoma in situ in 22 patients. There was no difference in the accuracy of mammography and ultrasonography (96.1% versus 95.8%). However, there were significant differences between the accuracy of far-infrared thermography (97.1%) and ultrasonography and mammography. The sensitivity and specificity of far-infrared thermography was superior to that of mammography and ultrasonography in lesions <2 cm in diameter.

Conclusion: Far-infrared thermography is more accurate for breast cancer screening than ultrasonography and mammography for lesions <2 cm. It has comparable diagnostic accuracy to ultrasound and better diagnostic accuracy than mammography for lesions >2 cm in diameter.