Search Results

1 - 5 of 5 items

  • Author: Zdena Krnáčová x
Clear All Modify Search

Abstract

The ability of soil to retain water in its profile is one of the most important soil functions. It is expressed as the water storage capacity or retention capacity of the soil, and it is primarily affected by the physical properties of the soil. Given the fact that the direct measurement of hydrological data for the soil is very difficult in terms of capacity, statistically expressed pedotransfer functions (PTF) are currently used for the indirect estimation of hydrolimits. The data most commonly used for the PTF are easy-to-measure and usually readily available soil data on particle size, bulk density, organic carbon and morphometric parameters of the environment (e.g. slope of the relief, etc.). The listed pedotransfer functions are deficient for the complex evaluation of soil cover; given disagreements about the attributes, they cannot be directly used for the vector database of classified soil-ecological units in the Slovak Republic. Therefore, we have created a model of an algorithm from selected parameters compatible with the vector database of classified soil-ecological units, which also allows for the spatial distribution of the cumulative coefficient of water retention capacity (CWRC) for the soils of the SR. The results of this evaluation are presented using case studies of the areas of Levoča and Hriňová.

Abstract

Agricultural and industrial conditions are not favourable in the uphill and mountain areas of the Zamagurie region, and tourism is often the only opportunity to create new jobs, develop the habitation areas and avoid the emigration of local inhabitants. The Walachian and Sholtys colonization has transformed the landscape and created unique significant spatial landscape elements that are traditionally utilized for agricultural purposes, and create a unique esthetical landscape preserved till the present times. This case study has been aimed at developing and applying the new quantification methods using GIS tools for evaluation of localizing, selective realization and environmental preconditions of the landscape, representing recreational (cultural) services of the landscape ecological systems, based on selected indicators. To evaluate the localizing preconditions of the landscape, we referred to the landscape-ecological complex geo-databases (LEC) (Thematic maps - internal ground document of ZB GIS , 2013), completed with the field survey during the period 2013−2014 and identification of secondary landscape structure elements (SLS) and selected morphometric indicators. While evaluating the selected town-planning, demographical and social-economic indicators, we quantified the selective landscape preconditions of tourism development. The realization preconditions were reviewed according to communication accessibility and material-technical equipment. As for environmental preconditions, we reviewed the presence of protected territory and landscape environmental load.

Abstract

The flysch areas belong to the territories with highest occurrence of landslides in Slovakia. Almost 67% of all landslides in Slovakia take place within the Carpathian flysch. It is a type of slope deformation that responds sensitively to the quality of individual factors that form the landscape and to the change in natural conditions. The occurrence of various geodynamic phenomena can be understood as a geological barrier that reduces or inhibits the use of natural environment and negatively affects the life of society and territorial development. In this paper, we evaluate the statistical significance of selected natural factors of the landscape in relation to the occurrence of unstable slopes in the Kysuce region. In addition, we also evaluated the expansion of unstable slopes in individual landscape factors. Significant linkages between the variables’ hydrogeological base_sandstones with thin clay layers (HB_s) and geological-substrate complex_loamy wastes to loamy-stony debris on sandy conglomerates (GSC_sc) (R = 0.95, p = 0.002) and secondary significant linkages between the variables soil type: Dystric Cambisols (S_CMd) and HB_s (R = 0.40, p = 0.002) (Klokočov and Zákopčie cadastres) were observed. Significant correlation of variables within the areas with unstable slopes was also observed between hydrogeological base_sandy flysch (HB_sf) and geological-substrate complex_loamy wastes on flysch stones (GSC_fs) (R = 0.81, p = 0.002) (Nová Bystrica and Kysucké Nové Mesto cadastres). The most unstable slopes occur in Nová Bystrica cadastre (34.62% of the area) and in the Klokočov cadastre (28.25% of the area). The inclination of slopes (especially slopes above 12°) plays an important role within the unstable slopes. Slopes with steep inclination cover up to 81.45% of the cadastral area of Nová Bystrica, of which almost 1/3 are unstable slopes.

Abstract

Krnačova Z., Hreško J., Kanka R., Boltižiar M.: The evaluation of ecological factors affecting environmental functions of the soils in area of traditional agrarian structure. Ekologia (Bratislava),Vol. 32, No. 2, p. 248-261, 2013. Cultural landscape can be seen as a result of hundred years of founding and sensitive cultivation of landscape structures respecting natural conditions. Specific geomorphological, climatic as well as social conditions enabled the conservation of original agrarian landscape structures mainly in the marginal regions of Slovakia. They are created by mosaic structures of extensively used small-scale landscape elements of permanent agricultural and arable land. An example of traditional agrarian way of using is foothill meadow-grazing landscape of the village Liptovska Teplička. By using the traditional extensive maintenance of the agricultural landscape, optimal environmental characteristics of soils were preserved. These were modified to some extent by the way of using and management. The submitted contribution is focused on the following:

• Indication of environmental characteristics of soils

• Quantification of the influence of chosen ecological factors on these environmental functions Seven research localities representing main types of the traditional landscape maintenance were chosen for needs of the research of soil and environmental conditions in a relation with the way of using the land and management. In given localities, we chose 21 sampling sites for secondary landscape structure (according to the legend of project Corine Land Cover, 2000), geological, soil, physical, biochemical and chemical conditions evaluation. Environmental functions indication was assessed in the following way: by assigning an amount of organic carbon (Cox) in a standard way (Fiala et al., 1999) for production functions, by assigning a ratio of granular fractions (pipetting method according to Novak) for retention functions. Buffering functions were evaluated potentiometrically by assigning an active soil reaction of pH (H2O) and exchange reaction of pH (KCl) in a soil. Highest values of Cox in the Ap horizon (7.67-6.62%), as well as pH of the soil environment (pH/KCl 7.26-7.21, pH/H2O 7.69-7.68) were assigned to anthrosolic and cultisolic rendzinas of extensively used grasslands. On the contrary, the lowest monitored values of organic matter Cox (2.51-2.53%), as well as pH of the soil environment (pH/KCl 4.81-5.21) (pH/ H2O 5.21-6.19) were indicated for soil subtypes anthrosols of the large fields and lithosol of theextensively used grasslands on non-carbonate substrates. Most favourable production and buffering soil properties were preserved in rendzinas on the carbonate substrates and extensively used meadows. Similarly, this type of soil on limestone used in a form of extensive meadows preserved also the most favourable retention functions according to the stated ratio of granularity fractions. Quantification of the influence of chosen ecological factors on environmental functions was performed using multivariate statistical methods, specifically principal component analysis (PCA). PCA is an indirect gradient analysis using the linear correlation of data, with a biplot as an output. Closeness of points in ordination graph represents their similarity of composition. The CANOCO (Ter Braak, Šmilauer, 2002) software was used to perform the analysis and to create the graph.

Abstract

Fazekašova D., Boltižiar M., Bobuľska L., Kotorova D., Hecl J., Krnačova Z.: Development of soil parameters and changing landscape structure in conditions of cold mountain climate (case study Liptovska Teplička). Ekologia (Bratislava), Vol. 32, No. 2, p. 197-210, 2013.

Soil physical, chemical and biological properties and the content of heavy metals were investigated between 1997 and 2010 and changing landscape structure was evaluated for years 1948-2010 under production conditions in the investigated area Liptovska Teplička (48° 57´ N; 20° 05´ E), situated in the marginal region of north-eastern Slovakia. Research showed that soil physical properties get adjusted after a long-term application of ecological farming system and the measured values were stabilised. High doses of organic fertilizers had positive effect on soil fertility, and thus indirectly on maintaining soil pH, available nutrients content and accumulation of humus in soil. The values of soil enzymes activities changed minimally during the research period. At the same time, it was proven that increasing the content of soil organic matter promotes natural protection of soil enzymes. This study underscores the importance of long-term, quantitative soil monitoring in determining the changes in agricultural land and ecosystem processes over time. Statistically significant effect of experimental year on all observed soil parameters was confirmed by analysis of variance. Effect of experimental locality, with the exception of pH/CaCl2, Cox and Nanorg, on other soil parameters was also statistically significant. This area represents a specific mountain grassland-arable landscape with conservation of traditional agriculture. The results of this paper also analyse landscape structure changes by using the historical maps and aerial photographs of the past 160 years.