Search Results

1 - 2 of 2 items

  • Author: Zamir Ahmed Abro x
Clear All Modify Search


In this research work, thermal properties of plain woven fabrics generated from regenerated bamboo and cotton fiber blended yarns were investigated. Seven mixtures of fiber (100% bamboo, 100% cotton, 10:90 bamboo: cotton, 20:80 bamboo: cotton, 30:70 bamboo: cotton, 40:60 bamboo: cotton and 50:50 bamboo: cotton) were developed to create 60 Tex ring spun yarn. The warp yarns were used as 100% regenerated bamboo and the bamboo: cotton blends were used alternatively in weft to produce plain woven fabrics. The plain structured woven fabrics show eminent thermal comfort properties with the blending of regenerated bamboo fibers. The air permeability of 100% regenerated bamboo fiber was recorded higher than the compared blends; the increased key factor contents of bamboo changed the air properties of the fabric. Furthermore, plain woven fabric of bamboo/cotton (50/50) has shown greater thermal conductivity and heat retention properties. The work reported in this paper is ensuring highpoints of thermal comfort properties of regenerated bamboo (100%) and cotton (100%) with plain woven structured fabrics, and potentially, the fabrics can be used for winter suiting apparel products.


In the apparel manufacturing, the fabric is the single largest element in the cost of the garment. Therefore, effectual fabric consumption causes a reduction in cost and exertions. The purpose of this research is to study the effects of fabric width on the efficiency of marker (cutting) plans. Fabric consumption is in four types for human body shapes, that is, triangle, oval, square, and circle, in both genders to control the fabric utilization. Two clothing styles, fitted trousers and fitted shirts, are manufactured in an apparel manufacturing industry. The marker plans produced through Garment Gerber Technology software are accomplished in 36 different fabric widths (independent variables). The evaluation of dependent variables, that is, marker efficiency, marker loss, and fabric consumption efficiency relevant to four body shapes in variable fabric widths is analyzed for both women and men. The statistical analysis indicates that there is a linear relationship between marker efficiency and fabric width (sig <0.05). The regression analysis (p-value) between dependent variables and predictor variables (body types and fabric width) is also statistically significant. Also, the result implies that markers are more productive with larger fabric widths in all styles in both genders.