Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yan Y. Wu x
Clear All Modify Search
Open access

Yan Y. Wu, Hui R. Jia, Qiang Wang, Ping L. Dai, Qing Y. Diao, Shu F. Xu, Xing Wang and Ting Zhou

Abstract

China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV) in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR) assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives). Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

Open access

Yuan Yuan Shi, Zachary Y. Huang, Xiao Bo Wu, Zi Long Wang, Wei Yu Yan and Zhi Jiang Zeng

Abstract

The Western honey bee (Apis mellifera) is a social insect characterized by caste differentiation in which the queen bee and worker bees display marked differences in morphology, behavior, reproduction, and longevity despite their identical genomes. The main causative factor in caste differentiation is the food fed to queen larvae, termed royal jelly (RJ). Alternative splicing (AS) is an important RNA-mediated post-transcriptional process in eukaryotes. Here we report AS changes in A. mellifera after being fed either A. mellifera RJ or A. cerana RJ. The results demonstrated that the RJ type affected 4 types of AS in adult A. mellifera: exon skipping, intron retention, alternative 5’ splice sites, and alternative 3’splice sites. After feeding with A. cerana RJ, AS occurred in many genes in adult A. mellifera that encode proteins involved in development, growth, the tricarboxylic acid cycle, and substance metabolism. This study provides the first evidence that heterospecific RJ can influence the AS of many genes related to honey bee development and growth.