Search Results

You are looking at 1 - 10 of 20 items for

  • Author: Y.C. Kim x
Clear All Modify Search
Open access

K. S. Kang, C. S. Kim and Y. A. El-Kassaby

Abstract

Acorn production was surveyed for eight consecutive years (2000-2007) in a 94-clone Sawtooth oak (Quercus acutissima) seed orchard established in 1992. Acorn production commenced in 2000 and peaked in 2005 and was characterized by a 3-4 years interval. Sixty out of the orchard’s 94 clones were consistent producers across the study period. Acorn production’s Pearson productmoment and Spearman rank correlation coefficients were significant and consistently positive over the eight years study period. Parental cumulative reproductive output, represented by parental balance curves, slightly varied among mast years and showed steady improvement (less distortion) over years. Effective population size (Np) was high in moderate and good acorn production years; however, departure from clonal equal contribution was observed throughout the study period. Parental effective population size was estimated under various scenarios of male fecundity (pollen production is: 1) proportional to clone size, 2) equal to female contribution, and 3) equal across all clones) resulted in high Np and low group co-ancestry under equal male fecundity scenario while moderate Np size and group co-ancestry were observed when male fecundity was assumed to be proportional to clone size (i.e., ramet number).

Open access

Y.C. Kim, S.S. Kim and J.U. Cho

Abstract

It is indispensable to evaluate fracture energy as the bonding strength of adhesive at composite material with aluminum foam. This specimen is designed with tapered double cantilever beam by British standards (BS 7991 and ISO 11343). 4 kinds of specimens due to m values of 2, 2.5, 3 and 3.5 are manufactured and compared each other with the experimental results. Adhesive fracture energy is calculated from the formulae of British standards. The value of m is the gradient which is denoted as the length and the height of specimen. As m becomes greater at static experimental result, the maximum load becomes higher and the displacement becomes lower. And the critical fracture energy becomes higher. As m becomes less at fatigue experimental result, the displacement becomes higher and the critical fracture energy becomes higher. Fracture behavior of adhesive can be analyzed by this study and these experimental results can be applied into real field effectively. The stability on TDCB structure bonded with aluminum foam composite can be predicted by use of this experimental result. Adhesive fracture energy is calculated from the formulae of British standards. Based on correlations obtained in this study, the fracture behavior of bonded material would possibly be analyzed and aluminum foam material bonded with adhesive would be applied to a composite structure in various fields, thereby analyzing the mechanical and fracture characteristic of the material.

Open access

O-H. Kim and Y.C. Kim

Abstract

It is essential in damage tolerance design to determine the stress intensity factor theoretically. The stress intensity factor for a cracked plate that is reinforced with a sheet by seam welding is determined theoretically and plotted as function of the seam welding location and stiffness ratio. The singular integral equation is derived based on the compatibility condition between the cracked plate and the reinforcement plate, and it is solved by means of Erdogan and Gupta‘s method. The theory is verified by comparing the results of the present analysis with those of a numerical analysis. The results from the present analysis show that the reinforcement effect improves as the welding line is situated closer to the crack and as the stiffness ratio of the cracked plate and the reinforcement plate increases.

Open access

K.C. Bae, J.J. Oak, Y.H. Kim and Y.H. Park

Abstract

To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa), which decreased with further addition of Fe.

Open access

C.K. Lee and Y.C. Kim

Abstract

In the drawing process, the roundness of corners in the punch and the die are very important factors in determining the thicknesses of the product. The results clearly revealed that the thickness of a flange was increased and the thickness of body parts reduced when the roundness of the die entrance was small. The material thickness of the top part was decreased when the corner roundness of the punch was large. The smooth inflow of materials was found to have a significant effect on the thickness during the post-process. The compressive strength of STS 304 material exhibited a higher value compared with other processing methods. Moreover, we clearly observed the corner roundness of the punch and the die to be a very important factor for STS 304 materials.

Open access

C.K. Lee and Y.C. Kim

Abstract

The height of the die roll, the distance of the V-ring, and the shear rate were varied with the aim of investigating the effects of the applied changes on the fine blanking line in a cold-rolled and a pickled steel sheet, referred to as SCP-1 and SHP-1, respectively. Both materials consisted primarily of a ferrite phase with small amounts of impurities including F, Mn, and Cr. The distance was found to be a very important factor in controlling the shear of the V-ring in the fine blanking process. When the position of the V-ring was set at distances of 1.5 mm and 2 mm, the die roll height increased with increasing shear speeds from 6.4 m/min to 10 and 16 m/min. Analysis of the influence of the shear rate revealed that low rates resulted in the lowest die roll heights since the flow of material was effectively inhibited.

Open access

Y.J. Jo, Y.H. Yoon, Y.H. Kim, S.Y. Chang, J.Y. Kim, Y.K. Lee, C.J. Van Tyne and W.H. Lee

Abstract

A single pulse of 0.75-2.0 kJ/0.7g of atomized spherical Ti powders from 300 mF capacitor was applied to produce a microporous Ti implant compact by electro-discharge-sintering (EDS). A solid core in the middle of the compact surrounded by a microporous layer was found. X-ray photoelectron spectroscopy was employed to study the surface characteristics of the EDS Ti compact and it revealed that Ti, C and O were the main constituents on the surface with a smaller amount of N. The surface was lightly oxidized and was primarily in the form of TiO2 resulting from the air oxidation during EDS processing. The lightly oxidized surface of the EDS compact also exhibited Ti nitrides such as TiN and TiON, which revealed that the reaction between air constituents and the Ti powders even in times as short as 128 msec.

Open access

K.-A. Lee, Y.-K. Kim, J.-H. Yu, S.-H. Park and M.-C. Kim

Abstract

This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs) on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

Open access

J.-J. Oak, J.I. Bang, K.-C. Bae, Y.H. Kim, Y.-C. Lee, H.H. Chun and Y.H. Park

Abstract

The proposed sintering process produce porosity and functional graded microstructure in the sinterd titanium powders. Titanium powders with different micro sizes were sintered at the proposed temperature region at 1200 and 1300°C for 2h. The apatite-forming on the graded microstructure is observed by immersion test in Hanks balanced salt soluion at 37°C. Sintering condition of titanium powders is estimated by thermogravitmetry-differential thermal analysis (TG-DTA). The synthersied surface structures and apatite-forming ability were characterized by a field emission scanning electron microscopy (FE-SEM) observation and energy dispersive X-ray spectroscopy (EDS) analysis. As results, these graded microstructure of sintered porous titanium powders reveals apatite-forming ability as osseointegration by calcification in Hanks balanced salt soluion(HBSS) at 37°C.

Open access

W.H. Lee, Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, C.J. Van Tyne and S.Y. Chang

Abstract

Electro-Discharge-Sintering (EDS) was employed to fabricate Ti-6Al-4V porous implant prototypes from atomized powders (100 – 150 μm), that were subjected to discharges of 0.75 to 2.0 kJ/0.7g-powder from 150, 300, and 450 μF capacitors. Both fully porous and porous-surfaced Ti-6Al-4V compacts with various solid core sizes were self-consolidated in less than 86 – 155 μsec. It is known that EDS can simultaneously produce the pinch pressure to squeeze and deform powder particles and the heat to weld them together. The formation of a solid core in these prototypes depends on the amounts of both the pinch pressure and heat generated during a discharge. The size of the solid core and the thickness of the porous layer can be successfully controlled by manipulating the discharge conditions such as input energy and capacitance.