Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Y. Jeon x
Clear All Modify Search
Open access

M.C. Oh, H. Yeom, Y. Jeon and B. Ahn

Abstract

The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

Open access

C. Jung, M.G. Lee and Y. Jeon

Abstract

Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process.

This study examines the effect of laser preheating in the micro-forging of AISI 4140. The processes were varied as follows: no treatment, micro-forging only, and laser-assisted micro-forging. The fatigue strength of the specimens was examined by means of an ultrasonic fatigue tester and then compared. The microstructural changes were investigated with respect to the processes by using scanning electron microscopy. In conclusion, it was confirmed that the laser preheating auxiliary forging affects the fatigue life. It was confirmed that the fatigue life was the mostly increased in 550°C temperature laser preheating micro forging process and the temperature was identified as the most important factor.

Open access

K.Ch. Jeon, Y.D. Kim, M.-J. Suk and S.-T. Oh

Abstract

Porous Ti with controlled pore structure was fabricated by thermal decomposition and sintering process using TiH2 powders and Polymethylmethacrylates (PMMA) beads as pore forming agent. The beads sizes of 8 and 50 μm were used as a template for fabricating the porous Ti. The TiH2 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1100°C. TGA analysis revealed that the PMMA and TiH2 were thermally decomposed at about 400°C forming pores and at about 600°C into metallic Ti phase. The porosity increased with increase in the amount of PMMA addition. Also, the microstructure observation showed that the pore size and shape were strongly dependent on the PMMA shapes.

Open access

K.H. Kang, C.H. Lee, M.K. Jeon, S.Y. Han, G.I. Park and S.-M. Hwang

Abstract

Used cladding hulls from pressurized water reactor (PWR) are characterized to provide useful information for the treatment and disposal of cladding hull wastes. The radioactivity and the mass of gamma emitting nuclides increases with an increase in the fuel burn-up and their removal ratios are found to be more than 99 wt.% except Co-60 and Cs-137. In the result of measuring the concentrations of U and Pu included in the cladding hull wastes, most of the residues are remained on the surface and the removal ratio of U and Pu are revealed to be over 99.98 wt.% for the fuel burn-up of 35,000 MWd/tU. An electron probe micro-analyzer (EPMA) line scanning shows that radioactive fission products are penetrated into the Zr oxide layer, which is proportional to the fuel burn-up. The oxidative decladding process exhibits more efficient removal ratio of radionuclides.