Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Xianwei Huang x
Clear All Modify Search
Open access

Jiyong Deng, Qiang Tao, Dong Yan, Xianwei Huang and Yunfeng Liao

Abstract

Small molecules of ThQuTh, CzQuTh, CzQuCz and TPAQuCz were designed and synthesized, based on quinoxaline acceptor, and electron donating groups, i.e. alkyl-thioephene, carbazole and triphenylamine on both side chains and molecular backbones. Their thermal, optical and electrochemical properties were systematically compared and studied. The absorption spectra of the small molecules were strongly affected by the donor units attached to quinoxaline. Strong electron donating groups, such as carbazole on the molecular backbone would lower optical band gap, resulting in a wide absorption and the strong donor on the side chain would enhance the absorption intensity in short wavelength region. The highest occupied molecular orbital (HOMO) energy levels of the four molecules were up-shifted with increasing the electron donating properties of donor units. The bulk-heterojunction organic solar cells with a device structure of ITO/PEDOT:PSS/SMs:PC61BM/LiF/Al were fabricated, in which the small molecules functioned as donors while PC61BM as acceptor. Because the electron-donating ability of carbazole (Cz), triphenylamine (TPA) is higher than that of thiophene (Th), CzQuTh, CzQuCz and TPAQuCz show higher power conversion efficiency (PCE) than that of ThQuTh. Furthermore, being the strongest in absorption intensity and widest in absorption spectrum, TPAQuCz has the highest power conversion efficiency. Further improvement of the device efficiency by optimizing the device structure is currently under investigation