Search Results

1 - 2 of 2 items

  • Author: Wojciech Marszałek x
Clear All Modify Search
Performance Analysis of Crystalline Silicon and CIGS Photovoltaic Modules in Outdoor Measurement

Abstract

The outdoor measurements (during two months experiment) of photovoltaic silicon and CIGS modules as well as simulation of energy production during the period experiment are presented in this paper. This paper offer comparison of construction and electrical characteristics of multicrystalline silicon based modules and CIGS based modules. The measuring system for PV modules efficiency research is shown. The nominal power of installed modules is 250 W for m-Si and 280 W for CIGS modules. The energy production in outdoor conditions at direct current side and alternating current side of each photovoltaic panel was measured. Each PV panel was also equipped with temperature sensor for screening panel temperature. The photovoltaic panels were connected to the electrical network with micro inverters. To determine the influence of irradiance at sunshine on power conversion efficiency of PV panels, the pyranometer was installed in the plane of the modules. Measurement of the instantaneous power and irradiance gave the information about the efficiency of a particular photovoltaic panels. In the paper all data from research installation were analysed to present the influence of solar cell technology on the power conversion efficiency. The results of energy production show that m-Si module produced more energy from square meter (30.9 kWh/m2) than CIGS module (28.0 kWh/m2). Thin film module shows the higher production per kWp than multicrystalline module: 217.3 kWh/kWp for CIGS and 201.9 kWh/kWp for m-Si. The energy production simulation (made by PV SOL software and outdoor measurements test are in the good agreement. Temperature power coefficient for the CIGS module is twice lower than for the multicrystalline silicon module: 0.56%/°C and 0.35%/°C for m-Si and CIGS modules, respectively. The obtained results revealed strong influence of irradiance and temperature on energy production by PV panels. Performed studies have a large field of potential application and could improve designing process of PV installation.

Open access
Application of Virtual Reality in Competitive Athletes – A Review

Abstract

The purpose of this study was to determine the state of the art in the area of virtual reality in competitive athletes of different levels of expertise in various disciplines and point the areas of its application. Articles published before August 2018 were considered in our review. The PubMed, SCOPUS, SportDiscus and Medline databases were searched. A combination of the following search terms was used: virtual reality, virtual environment, virtual system, athletes, sports, physical training, sport performance, physical exercises. Studies involved healthy competitive athletes. A total of 18 articles met the inclusion criteria. There were three areas of application of virtual reality to sport: performance analysis, simulation improvement and virtual training. Competitive athletes were mostly examined in a semi‐immersive setting. In conclusion, virtual reality seems to play a marginal role in competitive athletes’ training. Due to the fact that virtual reality interventions bring significant improvements in clinical research, well‐designed randomized control trials with detailed virtual training programmes are required in the future. Practically, virtual reality is effectively and commonly used to analyse performance in competitive athletes. There is still a need of creating fully interactive VR, where athletes will be able to cooperate with a virtual partner and influence the environment.

Open access