Search Results

1 - 10 of 11 items

  • Author: Wiesława Kranc x
Clear All Modify Search
Resveratrol and Its Analogues – Is It a New Strategy of Anticancer Therapy?

Summary

Resveratrol (RSV) is one of the polyphenols - metabolites common in plants,however it does not occur in animals. It occurs mainly in grape skin (Vitisvinifera), peanuts (Arachis hypogeal) and in the roots of (Polygonumcupidatum) a traditional Chinese curative plant.

RSV has a preventive property against the most serious diseases of modern world such as cancer, neurodegenerative diseases and cardiovascular diseases. Due to pleiotropy, RSV is currently the main object of many research teams′ interest, which is shown by the significant number of publications devoted to this subject.

Animal and human conducted studies have shown very low bioavailability of RSV (approx. 2%), which is the result of rapid biotransformation to sulphate and to a lesser extent, to the glucuronide conjugates as well. The studies on the improvement of RSV bioavailability, which have beencarried out for many years, have contributed to the synthesis of the analogues of more chemopreventive and more desirable pharmacokinetic properties. In order to enhance antiproliferative activity and RSV bioavailability, series of methyl analogues were synthesized and this will be described later in more detail. An example of such a derivative is DMU-212 (3,4,4’5-tetramethoxystilbene).

Open access
Recent Findings of the Types of Programmed Cell Death

Summary

Cell death plays an important role in maintaining the homeostasis of multicellular organisms. It can occur in a controlled manner by apoptosis or autophagy. Cell death which occurs regardless of regulatory factors include necrosis, mitotic catastrophe or oncosis.

Apoptosis and necrosis are cellular process that leads to cell death. However their mechanisms are different, although factors triggering them can be similar. Necrosis and apoptosis have many different characteristics in terms of biochemistry and morphology.

There are two main pathways of apoptosis induction signal: receptor - dependent and mitochondrial. The outsider apoptotic pathway is induced by external factors stimulating membrane receptors having an intracellular domain called death domain.

Mitochondrial apoptotic pathway is activated by increased concentration of reactive oxygen species (ROS), DNA damage, disorders electrolyte transport and an increase in the concentration of the calcium ions in the cytoplasm. In response to stress-factors, mitochondrial channels are opened, so that is released into the cytoplasm cytochrome C. This work is aimed at an overall description of exchanged processes.

Open access
The differentiation and transdifferentiation of epithelial cells in vitro – is it a new strategy in regenerative biomedicine?

Abstract

In modern medical research, stem cells are one of the main focuses, believed to be able to provide the solution to many currently unsolvable medical cases. However, their extraordinary potential for differentiation creates much obstacles in their potential application in clinical environment, without understanding the whole array of molecular mechanisms that drive the processes associated with their development and maturation. Because of that, there is a large need for studies that concern the most basic levels of those processes. Progenitor stem cells are a favorable target, as they are relatively lineage committed, making the amount of signaling required to reach the final form much lower. Their presence in the adult organism is also an advantage in their potential use, as they can be extracted without the need for storage from the moment of pre-natal development or birth. Epithelial tissues, because of their usual location or function, exhibit extraordinary level of plasticity and proliferative potential. That fact makes them one of the top candidates for use in applications such as tissue engineering, cell based therapies, regenerative and reconstructive medicine. The potential clinical application, however, need to be based on well developed methods, in order to provide an effective treatment without causing major side effects. To achieve that goal, a large amount of research, aiming to analyze the molecular basics of proliferation and differentiation of epithelial stem cells, and stem cells in general, needs to be conducted.

Open access
Analysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the compound process responsible for proper oocytes transport and successful fertilization. However, the main mechanisms which regulated this process are still not entirely known. Moreover, the OECs metabolism, which may be identified as the “cellular activity” marker, is poorly recognized. In this study we investigated the fructose and mannose metabolic pathway in porcine OECs primary long-term cultured in vitro.

In our study, we employ a primary long term in vitro culture (IVC) and microarray approach (the Affymetrix microarray were used for analysis of transcriptomic profile of OECs) for expression levels analysis.

We found that from the whole analyzed transcriptome, 1537 genes were upregulated and 995 were down regulated after 7 days of culture, 1471 genes were upregulated and 1061 were downregulated after 15 days of culture and 1329 genes were upregulated and 1203 were downregulated after 30 days of culture. Moreover, the differential expression of SORD, FPGT, PFKFB4, TPI1, MPI, ALDOC, HK2 and PFKFB3 at 24 hours, 7 day, 15 day and 30 day, was also observed.

We suggested that fructose and mannose metabolism may be important molecular bio-marker of porcine OECs capability in in vitro model. The metabolic profile is significantly accompanied by cells proliferation in vitro. The transcriptomic profile of SORD, FPGT, PFKFB4, TPI1, MPI, ALDOC, HK2 and PFKFB3 expression may be identified as “fingerprint” of fructose and mannose metabolism in OECs as well as involved in cellular in vitro developmental capacity in pigs.

Open access
The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation

Abstract

The mammalian oocytes undergo significant biochemical and structural modifications during maturation both in vitro and in vivo. These changes involve chromatin reorganization and modification within metabolic status of cytoplasmic organelles. After oocytes’ successful maturation the substantially increased storage of RNA was observed. Moreover, the early embryo interaction with maternal endometrial tissue after fertilization is up to now considered as the main marker of proper embryo implantation and early growth. In this study, we first investigated the expression profile of genes involved in blood vessel formation and blood circulation in porcine oocytes before and after in vitro maturation.

The cumulus-oocyte complexes were collected from pubertal Landrace gilts and classified as before in vitro maturation (in Vivo) or after in vitro maturation (in Vitro). The RNA was isolated from these two experimental groups and analyzed using Affymetrix microarrays.

We found an increased expression of genes involved in ontological groups such as “blood circulation” (TPM1, ECE1, ACTA2, EPHX2, EDNRA, NPR2, MYOF, TACR3, VEGFA, GUCY1B3), “blood vessel development” (ANGPTL4, CYR61, SEMA5A, ID1, RHOB, RTN4, IHH, ANGPT2, EDNRA, TGFBR3, MYO1E, MMP14), and “blood vessels morphogenesis” (ANGPT2, as well as other common transcripts) in in Vivo group as compared to decreased expression of these genes in in Vitro group of oocytes.

It has been suggested that investigated genes undergo significant expression before in vitro maturation, when enhanced storage of large amount of RNA takes place. Creating templates for synthesis of proteins is required for formation of fully mature gametes and early embryo growth. Therefore we hypothesized that the processes of vascularization and/or angiogenesis reach a high activity in immature oocytes and are distinct from achievement of maturational stage by oocytes in pigs.

Open access
Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach

Abstract

The ovary is part of the reproductive system, possessing very important functions in the reproduction process (ovum and embryo transfer, providing a suitable environment for sperm capacitation, etc.). There are two types of cells in the fallopian tubes: alveolar and secretive cells. These study shows the metabolic processes in pig oviductal epithelial cells associated with the activation of signaling pathways of amino acids metabolism and degradation during long-term in vitro culture. Oviductal epithelial cells from 45 colonies in the anestrous phase of the estrous cycle have been utilized in this study. RNA extract from the OEC primary cultures was pooled after 24h, 7days, 15 days and 30 days from the beginning of culture and the transcriptome investigated by Affymetrix® Porcine Gene 1.1 ST. From the whole transcript that consisted of 2009 different genes, 1537 were upregulated and 995 were downregulated after 7 days of culture, 1471 were upregulated and 1061 were downregulated after 15 days of culture and 1329 were upregulated and 1203 were downregulated after 30 days of culture. The results of these studies provide, for the first time, information on the activation of metabolic pathways of amino acids such as valine, leucine, isoleucine, cysteine, and methionine in the investigated tissue. They also indicate genes that may be OECs-specific genetic markers that are expressed or upregulated during long-term in vitro culture.

Open access
Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.

Open access
Does Porcine Oocytes Maturation in Vitro is Regulated by Genes Involved in Transforming Growth Factor Beta Receptor Signaling Pathway?

Summary

The oocyte growth and development in follicular environment are substantially accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). During these processes, the mammalian gametes reach full maturational stage and may be further successfully fertilized by single spermatozoon. These unique mechanisms are regulated by expression of clusters of genes and their biochemical signaling pathways.

In this article we described differential expression pattern of transforming growth factor beta (TGFB) gene superfamily in porcine oocytes before and after in vitro maturation (IVM).

We performed Affymetrix® microarray assays to investigate the TGFB-related genes expression profile in porcine immature oocytes and gametes cultured for 44h in vitro.

In results we found 419 different genes, 379 genes with lower expression, and 40 genes characterized by increased RNA profile. Moreover, significant up-regulation of 6 genes belonging to TGFB signaling pathway such as: TGFBR3, SMAD4, FOS, KLF10, ID1, MAP3K1 in immature porcine oocytes (before IVM), was also observed.

It may be suggested that genes involved in TGFB-related signaling pathway are substantially regulated before IVM. Furthermore, these genes may play a significant role during early stages of nuclear and/or cytoplasmic porcine oocytes maturation. The investigated transcripts may be also recommended as the markers of oocytes maturational capability in pigs.

Open access
Positive Regulation of Macromolecule Metabolic Process Belongs to the Main Mechanisms Crucial for Porcine Oocytes Maturation

Summary

The mammalian oocytes maturation is the compound process that involves morphological and molecular changes. These modifications include storage of macromolecules, which are crucial for proteins biosynthesis during periimplantation stages of embryo development. This study was aimed to investigate the genes expression profile encoding macromolecules important for regulation of proper porcine oocytes maturation.

The porcine oocytes were collected from large ovarian follicles and analyzed both before and after in vitro maturation (IVM). Additionally, to check the developmental competence status, brilliant crezyl blue test (BCB) was performed. The obtained cDNA was used for biotin labeling and fragmentation by AffymetrixGeneChip® WT Terminal Labeling and Hybridization (Affymetrix). The preliminary analysis of the scanned chips was performed using AffymetrixGeneAtlasTM Operating Software. The created CEL files were imported into downstream data analysis software.

In results, we found expression of 419 different genes, 379 genes were down-regulated and 40 genes were up-regulated in relation to the oocyte transcriptome before in vitro procedure. We observed up-regulation of all genes involved in “positive regulation of macromolecule metabolic process” before IVM as compared to transcriptional profile analyzed after IVM.

In conclusion, we suggested that genes encoding proteins involved in macromolecule metabolism are important for achieving of porcine oocytes maturational stage. Moreover, the “activity of macromolecules metabolism” is much more increased in immature oocytes.

Open access
Does migrative and proliferative capability of epithelial cells reflect cellular developmental competence?

Abstract

Mammalian epithelial and epithelial-like cells are significantly involved in various processes associated with tissue development, differentiation and oncogenesis. Because of that, high number of research is focused on identifying cells that express stem-like or progenitor characteristics. Identifying such cells and recognizing their specific markers, would open new clinical opportunities in transplantology and oncology. There are several epithelia characterized by their ability to rapidly proliferate and/or differentiate. Due to their function or location they are subject to cyclic changes involving processes of apoptosis and regeneration. Literature presenting well-structured studies of these types of epithelia was analyzed in order to compare various results and establish if epithelial cells’ migrative and proliferative ability indicates their stemness potential. Endometrial, ovarian, oviductal and oral mucosal epithelia were analyzed with most of the publications delivering relatively unified results. The ability to rapidly proliferate/differentiate usually indicated the presence of some kind of stem/stem-like/progenitor cells. Most of the papers focused on pinpointing the exact location of these kind of cells, or analyzing specific markers that would be used for their future identification. There have also been substantial proportion of research that focused on discovering growth factors or intercellular signals that induced proliferation/differentiation in analyzed epithelia. Most of the research provided valuable insights into the modes of function and characteristics of the analyzed tissue, outlining the importance of such study for the possible clinical application of in vitro derived cell cultures.

Open access