Search Results

1 - 2 of 2 items

  • Author: Wenduan Xu x
Clear All Modify Search
Extending Hiero Decoding in Moses with Cube Growing

Extending Hiero Decoding in Moses with Cube Growing

Hierarchical phrase-based (Hiero) models have richer expressiveness than phrase-based models and have shown promising translation quality gains for many language pairs whose syntactic divergences, such as reordering, could be better captured. However, their expressiveness comes at a high computational cost in decoding, which is induced by huge dynamic programs associated with language model integrated decoding, where the search space is lexically exploded and exact search often becomes intractable. Cube pruning and growing are two approximate search algorithms to make decoding much more efficient. In this article, we describe an extension to the Hiero decoder of the Moses toolkit by providing cube growing as an alternative to cube pruning, with an additional parameter similar to Jane's cube growing implementation that is not present in the original one. We also report experimental results on a full-scale NIST MT08 Chinese-English translation task.

Open access
Don’t Interrupt Me While I Type: Inferring Text Entered Through Gesture Typing on Android Keyboards


We present a new side-channel attack against soft keyboards that support gesture typing on Android smartphones. An application without any special permissions can observe the number and timing of the screen hardware interrupts and system-wide software interrupts generated during user input, and analyze this information to make inferences about the text being entered by the user. System-wide information is usually considered less sensitive than app-specific information, but we provide concrete evidence that this may be mistaken. Our attack applies to all Android versions, including Android M where the SELinux policy is tightened.

We present a novel application of a recurrent neural network as our classifier to infer text. We evaluate our attack against the “Google Keyboard” on Nexus 5 phones and use a real-world chat corpus in all our experiments. Our evaluation considers two scenarios. First, we demonstrate that we can correctly detect a set of pre-defined “sentences of interest” (with at least 6 words) with 70% recall and 60% precision. Second, we identify the authors of a set of anonymous messages posted on a messaging board. We find that even if the messages contain the same number of words, we correctly re-identify the author more than 97% of the time for a set of up to 35 sentences.

Our study demonstrates a new way in which system-wide resources can be a threat to user privacy. We investigate the effect of rate limiting as a countermeasure but find that determining a proper rate is error-prone and fails in subtle cases. We conclude that real-time interrupt information should be made inaccessible, perhaps via a tighter SELinux policy in the next Android version.

Open access