Search Results

1 - 3 of 3 items

  • Author: Wacław Stachowicz x
Clear All Modify Search

Abstract

The stable and complex EPR signals produced by the action of ionizing radiation on crystalline L-sorbose (C6H12O6) separated from rowan berries (Sorbus aucuparia) were studied. Isothermal heating of the samples at the temperature close to the melting point of L-sorbose (140°C) results in the modification and simplification of the EPR signal involved. In the EPR signal of heated L-sorbose, the isotropic quartet was distinguished. In the differential spectrum obtained by subtraction of normalized spectra of unheated and heated L-sorbose, the isotropic doublet was identified in addition. The DFT fitting offers the probable assignment of the EPR signals to specific radical structures.

Abstract

The stable EPR signal produced by ionizing radiation in crystalline D-mannose (C6H12O6) and separated from cranberries (Vaccinium oxycoccus) was studied. The isothermal heating of irradiated sample at 95°C for 10 minutes (melting point of D-mannose is 132°C) resulted in the modification and simplification of the EPR signal involved. The isotropic quartet has been recognized in the EPR signal of heat-treated sample. Molecular structure of the isotropic quartet identified in the complex EPR signal of D-mannose crystallite is proposed.

Abstract

The dominating carbohydrates in fruits are monosaccharides like fructose, glucose, sorbose and mannose. In dehydrated fruits, concentration of monosaccharides is higher than in fresh fruits resulting in the formation of sugar crystallites. In most of dried fruits, crystalline fructose, and glucose dominate and appear in proportion near to 1:1. Irradiation of dried fruits stimulates radiation chemical processes resulting in the formation of new chemical products and free radicals giving rise to multicomponent EPR signal which can be detected for a long period of time. For that reason, it is used as a marker for the detection of radiation treatment of dried fruits. It has been found that EPR spectra recorded in dried banana, pineapple, papaya, and fig samples resemble the EPR spectrum obtained by computer addition of fructose and glucose spectra taken in proportion 1:1. The decay of radiation induced EPR signals proceeds in dried fruits fast during the first month of observation and becomes much slower and almost negligible after prolonged storage. However, it remains intense enough for EPR detection even one year after processing. The radiation induced EPR signal is easily detected in dried fruits exposed to 0.5 kGy of gamma rays. Thus, the EPR method of the detection of irradiated fruits can be used for the control of dried fruits undergoing quarantine treatment with 200-300 Gy of ionizing radiation.