Search Results

1 - 2 of 2 items

  • Author: Vladimir Roganov x
Clear All Modify Search


The development of new software to improve the operation of modernised and developed technological facilities in different sectors of the national economy requires a systematic approach. For example, the use of video recording systems obtained during operations with the use of endoscopic equipment allows monitoring the work of doctors. Minor change of the used software allows using additionally processed video fragments for creation of training complexes. The authors of the present article took part in the development of many educational software and hardware systems. The first such system was the “Contact” system, developed in the eighties of the last century at Riga Polytechnic Institute. Later on, car simulators, air plan simulators, walking excavator simulators and the optical software-hardware training system “Three-Dimensional Medical Atlas” were developed. Analysis of various simulators and training systems showed that the computers used in them could not by themselves be a learning system. When creating a learning system, many factors must be considered so that the student does not receive false skills. The goal of the study is to analyse the training systems created for the professional training of medical personnel working with endoscopic equipment, in particular, with equipment equipped with 3D indicators.


The relevance and nature of a new technology for measurement of vibrational displacement of a material point through normal toward the object plane are stated in the article. This technology provides registration and processing of images of a round mark or a matrix of round marks, which are applied to the surface of a control object. A measuring signal here is the module of radius increment of the round mark image at vibrational blurring of this image. The method for calculation of the given error of measurements, as a function of a number of pixels of the round mark image, has been developed and proven in the present research. The results of pilot studies are given. Linearity of transformation of the measured size into a measuring signal has been proven. The conditions of a technical compromise between the field of view area of a recording device during distribution measurement of vibrational displacements along the surface of a control object, and the accuracy of this measurement are determined. The results are illustrated with numerical examples of calculations of the given error of measurements in the set field of view and the one at the given maximum set error of measurements.