## Thermal Fluctuations in Electric Circuits and the Brownian Motion

In this work we explore the mathematical correspondence between the Langevin equation that describes the motion of a Brownian particle (BP) and the equations for the time evolution of the charge in electric circuits, which are in contact with the thermal bath. The mean quadrate of the fluctuating electric charge in simple circuits and the mean square displacement of the optically trapped BP are governed by the same equations. We solve these equations using an efficient approach that allows us converting the stochastic equations to ordinary differential equations. From the obtained solutions the autocorrelation function of the current and the spectral density of the current fluctuations are found. As distinct from previous works, the inertial and memory effects are taken into account.