Search Results

1 - 8 of 8 items

  • Author: Vl. Bezrukovs x
Clear All Modify Search
Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System

Abstract

In the present paper, recent measurement results of refurbished Irbene RT-16 radio telescope receiving system performance are presented. The aim of the research is to evaluate characteristics of RT-16, which will allow carrying out necessary amplitude calibration in both single dish and VLBI observations, to improve the performance of existing system as well as to monitor, control and compare performance if possible changes in the receiving system will occur in future. The evaluated receiving system is 16 m Cassegrain antenna equipped with a cryogenic receiver with frequency range from 4.5 to 8.8 GHz, which is divided into four sub-bands. Multiple calibration sessions have been carried out by observing stable astronomical sources with known flux density by using in-house made total power registration backend. First, pointing offset calibration has been carried out and pointing model coefficients calculated and applied. Then, amplitude calibration, namely antenna sensitivity, calibration diode equivalent flux density and gain curve measurements have been carried out by observing calibration sources at different antenna elevations at each of the receiver sub-bands. Beam patterns have also been evaluated at different frequency bands. As a whole, acquired data will serve as a reference point for comparison in future performance evaluation of RT-16.

Open access
Investigations of Wind Shear Distribution on the Baltic Shore of Latvia

Abstract

The paper presents a review of wind parameter measurement complexes and investigation methods used for potential wind energy evaluation. Based on results of long-term investigations of wind shear distribution regularities are shown up to 160 m height on the Baltic Sea shore. Distribution of potential wind energy in Latvia is shown as a map and table of average and average cubic wind speed values. Database of wind parameter measurements is available at a public website.

Open access
Assessment of Wind Shear and Wind Energy Potential in the Baltic Sea Region of Latvia

Abstract

The paper is devoted to the investigation into the wind energy potential based on long-term observations of the wind speed and energy density fluctuations at heights from 10 to 160 m on the Baltic Sea coast of Latvia. During the observations (2004 - 2013), the wind speed and direction values were measured, and the statistical database was accumulated using a LOGGER 9200 Symphonie measuring systems mounted on 60 m masts - one on the western coast and another on the north-east of Latvia. From June 2011 to May 2012, these measurements were complemented with the data for the heights from 40 to 160 m obtained by means of a ZephIR lidar and with the metrological data provided by “Latvian Environment, Geology and Meteorology Centre” for the same period. The graphs of seasonal fluctuations in the wind speed were obtained for the heights up to 160 m by measurements over the period of 2007 - 2013. The results of the research on the wind speed distribution up to 200 m are promising for evaluation of the wind energy potential of Latvia and will be helpful in assessment of prospective sites for construction of WPPs.

Open access
Receiving System For Ionosphere Research / Uztverošā Sistēma Jonosfēras Pētīšanai

Abstract

The RT-32 radio telescope at Irbene has been used in the VLBI experiments for studying the ionosphere by its transradiation with the signals from Navstar GPS and GLONASS satellites. The VLBI station at Irbene is equipped with a modular receiver system operating on 1.6 GHz and consisting of off-the-shelf RF components (Mini Circuits Ltd.). In the secondary focus of RT-32 a four-helix antenna array is installed. The implemented receiver system has successfully been employed in the experiments as a part of multi-element radiointerferometer, with interferometric echoes registered from all the observed satellites.

Open access
Receiving And Data Acquisition Systems Of Rt-32 For Vlbi Observations / Rt-32 Uztveršanas Un Datu Reģistrācijas Sistēmas Vlbi Novērojumiem

Abstract

Radiotelescope RT-32 is a fully steerable 32-m parabolic antenna located at Irbene and belonging to Ventspils International Radio Astronomy Centre (VIRAC). Currently, the work on upgrading and repair of its receiving hardware and data acquisition systems is of high priority for the VIRAC.

One of the main scientific objectives for the VIRAC Radioastronomical observatory is VLBI (very long baseline interferometry) observations in centimetre wavelengths in collaboration with world VLBI networks, such as European VLBI network (EVN), Low Frequency VLBI network (LFVN), and others.

During the last years the room in the secondary focus of telescope was reconstructed, and several new receivers were installed. Currently, RT-32 observations are carried out in four different bands: 92 cm, 18 cm, 6 cm, and 2.5 cm. First three of them are already successfully employed in diversified VLBI experiments. The receiver on 2.5 cm band has only one linear polarized chain and is used mainly for the methanol maser single dish observations.

The apparatus system of RT-32 is equipped with two independent VLBI data acquisition systems: TN-16, and DBBC in combination with MK5b. Both systems are employed in interferometric observations depending on the purpose of experiment and the enabled radiotelescopes.

The current status of RT-32, the availability of its receiving and data acquisition units for VLBI observations and the previous VLBI sessions are discussed.

Open access
Low-Cost L-Band Receiving System Front-End for Irbene RT-32 Cassegrain Radio Telescope

Abstract

Irbene RT-32 radio telescope is one of the main instruments operated by Ventspils International Radio Astronomy Center (VIRAC), which is used for participation in VLBI and single-dish mode observations, including European VLBI Network (EVN) and other astronomy projects such as recently started research on small bodies of solar system, which involves weak spectral line detection at L-band. Since start of the operation as a radio telescope, single C-X band receiver has been available at RT-32, but regular demand for L-band frequencies has been received due to its importance in spectral line science. In case of RT-32 geometry, optimum dimensions of L-band feed antenna system are inconveniently large and its installation without significant feed cone rebuilding is complicated. While work is currently ongoing to redesign the feed cone for multiple receiver support and to develop high performance L-band feed system, temporal, compact and low-cost receiver has been built and installed laterally to secondary focus, which in sense of performance and functionality has been proven to be appropriate for most of the current needs. Receiver is based on small parabolic reflector allowing one to use a compact dual circular polarized horn antenna, which together with a Cassegrain antenna forms a three-mirror system. Front-end is uncooled that allows reducing operational and maintenance costs, while still providing acceptable noise performance. Practical tests show average overall sensitivity of 750 Jy at 1650 MHz in terms of system effective flux density (SEFD). The paper describes the development of the receiver and presents the main results of performance characterization obtained at Irbene RT-32.

Open access
Measurements of Interferometer Parameters at Reception of GLONASS and GPS Signals

Abstract

The present paper deals with the calibration method of interferometers with antennas having a small effective area, on the quasinoise signals of GLONASS and GPS navigation satellites. Algorithms for calculation of antenna coordinates and instrumental delay from the analysis of correlation interferometer response to signals of satellites in the near field of the instrument were reviewed. The method was tested in VLBI experiments on interferometers with medium and large baselines that included radio telescopes of NIRFI and VIRAC. The values of the antenna coordinates and instrumental delay with an error within the limits of one discrete were obtained. The sources of measurement errors and ways to improve the accuracy of results were analysed.

Open access
Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

Abstract

A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information can then allow exploring easily the desired range of search for unknown or not fully determined orbit objects. These features make Radar VLBI personality most useful in the space debris measurements.

Open access