Search Results

1 - 3 of 3 items

  • Author: Vishal Goyal x
Clear All Modify Search

Abstract

This paper studies an improved fractional order parallel control structure (FOPCS) for enhancing the robustness in an industrial control loop having a first order process with dead time along with its tuning aspects. Since inclusion of fractional order calculus also increase the number of parameters to be determined for a particular control loops, tuning becomes an essential task. Four different tuning methods are considered to optimize the gains of parallel control structure (PCS) and FOPCS. Integral of time weighted absolute error for servo and regulatory problems along with overshoot value have been considered for performance evaluation. Extensive simulation studies including change in setpoint and mismatch in processmodel parameters have been carried out. On the basis of these studies, it was observed that FOPCS tuned by backtracking search algorithm, outperformed all other controllers in terms of considered performance measures.

Abstract

In this paper, a new combination of Interleave division multiple access (IDMA) and spatial diversity offered by cooperative relay aided distributed beam forming is proposed. In the offered scheme communication strategy consists two steps. All users broadcast their message to relays in the first step and then relays amplifies and forward the information to the desired destination. IDMA, which is popular non-orthogonal multiple access (NOMA) technique is used to combat the effect of multiple access interference (MAI) at relay as well as destination nodes. Each relay processed the signal to maintain the QoS of destination. The goal of this work is to find the appropriate beam forming weights by minimising the transmit power and without compromising the QoS in terms of SINR. However power minimization is not the convex problem, so semi-definite relaxation is used to modify the problem in to semi-definite programming (SDP) problem and the conventional SDP problem solver CVX is used for solution. The numerical explanation and simulation experiment of the proposed scheme shows the performance improvements in terms of bit error rate.

Abstract

Now-a-days Massive MIMO (mMIMO) become an attractive technology due to its spectral and energy efficiency by the means of simple signal processing. However, in overloaded scenario, wherein the number of users equipments (UEs) are larger than number of antennas, the spectral effciency (SE) suffers and hence error rate performance, it has been shown recently that use of code domain NOMA in mMIMO can improve the SE performance. Further, interleave division multiple access (IDMA) has been drawn much attention as a suitable code domain non-orthogonal multiple access (NOMA) for future communication standards. This paper proposes the work in two folds, first a massive multiple input and multiple output (MIMO) and IDMA communication system is jointly proposed in which antennas on the base station serves users simultaneously in the same frequency band. Both and are large in numbers. Secondly, the minimum mean square error (MMSE) based beamformer is suggested to combat the propagation loss and effect of multiple access interference (MAI), for massive MIMO-IDMA system under downlink communication constraints. With the help of simulation results, the performance of the proposed system with MMSE beamforming have been investigated in terms of BER vs SNR curve plot.