Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Viera Šimonová x
Clear All Modify Search
Open access

Dušan Plašienka, Viera Šimonová and Jana Bučová

Abstract

The Manín Unit represents a transitional tectonic element between the Central Western Carpathians and the Pieniny Klippen Belt. The overall map-view structure of the Manín Unit is dominated by elliptical antiforms composed of comparatively competent Jurassic and Lower Cretaceous strata, surrounded by soft Upper Cretaceous shales, marls and sandstones. During layer-parallel shortening, the Manín sedimentary succession behaved as a multilayer reinforced by a variously thick rigid layer of massive Urgonian limestone. The multilayer deformed by flexural slip folding, but the fold wavelength was controlled by the rigid layer undergoing buckling. It is inferred that, besides the lateral thickness differences in the rigid layer, development of brachyfolds and particularly periclines such as the Butkov fold also resulted from the interference of two perpendicular macroscopic fold systems.

Open access

Ján Soták, Zuzana Pulišová, Dušan Plašienka and Viera Šimonová

Abstract

The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

Open access

Ján Spišiak, Lucia Vetráková, David Chew, Štefan Ferenc, Tomáš Mikuš, Viera Šimonová and Peter Bačík

Abstract

Calc–alkaline lamprophyres are known from several localities in the Malá Fatra Mountains. They form dykes (0.5–3 m) of varying degree of alteration that have intruded the surrounding granitoid rocks which are often incorporated xenoliths. Clinopyroxenes (diopside to augite), amphiboles (kaersutitic), biotites (annite) and plagioclases are major primary minerals of the dykes, accessory minerals include apatite, ilmenite, rutile, pyrite, chalcopyrite, and pyrrhotite. Apatite has a relatively low F, but increased Cl content compared to typical apatite from lamprophyres or magmatic apatite from granitic rocks in the Western Carpathians. The chemical composition of the lamprophyres indicates their calc–alkaline character, but affinity to alkaline lamprophyres is suggested by the Ti enrichment in clinopyroxene, amphibole and biotite. According to modal classification of the minerals, the studied rocks correspond to spessartite. The differences in the chemical composition of the rocks (including Sr and Nd isotopes) probably result from the contamination of primary magma by crustal material during magma ascent. The age of the lamprophyres, based on U/Pb dating in apatite, is 263.4 ± 2.6 Ma.