Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Valentina P. Hadzhinesheva x
Clear All Modify Search
Open access

Maya D. Markova, Irina V. Chakarova, Ralitsa S. Zhivkova, Venera P. Nikolova, Valentina P. Hadzhinesheva and Stefka M. Delimitreva

Summary

The tubulin cytoskeleton is vital for maintenance and dynamics of eukaryotic cells and molecular defects in its components can lead to serious conditions. So far, mutations in genes for alpha-, beta- and gamma-tubulin, motor proteins of the kinesin and dynein family, microtubule-associated and centrosomal proteins have been found to cause disorders in humans. Most phenotypic effects are on the nervous system, leading to abnormal brain development (e.g. lissencephaly and microcephaly) or to neurodegeneration in later life (e.g. amyotrophic lateral sclerosis and frontotemporal dementia). Another group of disorders include the ciliopathies, caused by defects in the axoneme. They include primary ciliary dyskinesia (immotile cilia syndrome), which is characterized by chronic respiratory infections, male infertility and randomly established left-right asymmetry. In most cases, the underlying defects are in axonemal dynein. Mutations in genes for centrosomal components have been shown to cause cortical dysplasia and dwarfism by disrupting the mitotic spindle, and some cases of infertility with maturation arrest are likely to be caused by unidentified mutations damaging the meiotic spindle. In view of these diverse phenotypes, knowledge about mutations affecting tubulin cytoskeleton becomes increasingly useful for clinical practice.

Open access

Stefka M. Delimitreva, Ralitsa S. Zhivkova, Irina V. Chakarova, Valentina P. Hadzhinesheva, Vladislav V. Lazarov and Dimitrina K. Dimitrova-Dikanarova

Summary

The reaction of anti-sperm antibody-positive sera from infertile women with fractionated mouse ovarian antigens was measured by enzyme-linked immunosorbent assay (ELISA). Antigens were obtained by extraction for nuclear matrix and intermediate filaments (NM-IF) producing three protein fractions – soluble, cytoskeletal and NM-IF. The results showed that sera from some infertile patients, but not control sera, react with either the soluble fraction or the NM-IF fraction. The reaction with soluble proteins was most likely directed against surface antigens, possibly aggravating the fertility problems, while the anti-NM-IF antibodies could indicate release of insoluble intracellular components by tissue damage of unknown origin.