Search Results

1 - 2 of 2 items

  • Author: Václav Šimůnek x
Clear All Modify Search

Abstract

Long-term temporal development of beech stands in relation to climatic conditions is well documented by dendrochronological analyses. The study aims to identify and describe growth factors affecting natural European beech stands (Fagus sylvatica L.) on permanent research plots in the eastern Krkonoše Mountains, the Czech Republic. The paper focus on radial growth dynamics, frequency and cyclicity, and the effect of climatic factors on diameter increment of beech stands since 1850. The growth development of beech stands was significantly affected by air pollution load in 1977–1989, and increasingly frequent climate extremes in recent years (since 2010). Periodic increment events recurred in approximately 10–18 years’ periods. Stands on research plots responded differently to climatic factors, the main limiting factor being low temperatures during the growing season, frost damages and extreme droughts. The positive influence of temperatures on beech increments was recorded in winter, early spring, and especially in July and August of the current year. Conversely, precipitation in the previous year had higher impact on radial increment, with prevailing negative correlation. The plots were negatively affected by the decrease in sum of precipitation in February and March, but it was the temperature that influenced the beech increment most significantly. Dendrochronological analysis of close-to-nature beech stands provides valuable information on radial forest growth in response to changing climatic conditions.

Abstract

Norway spruce (Picea abies [L.] Karst.) and silver fir (Abies alba Mill.) are main tree species of Central Europe that are currently highly vulnerable in times of global climate change. The research deals with the effect of climate and air pollution on radial growth of silver fir and Norway spruce in mixed age-varied (56 – 146 years) forests in the Jeseníky Protected Landscape Area, the Czech Republic. The objectives were to evaluate biodiversity, structure and production, specifically interaction of radial growth of fir and spruce to air pollution (SO2, NOX, tropospheric ozone) and climatic factors (precipitation, air temperature). Concentration of SO2 and NOX had negative effect on radial growth of fir, while radial growth of spruce was more negatively influenced by tropospheric ozone. Fir showed higher variability in radial growth and was more sensitive to climatic factors compared to spruce. On the other hand, fir was relatively adaptable tree species that regenerated very well when the pressure of stress factors subsided (air pollution load, Caucasian bark beetle, frost damage). Low temperature was a limiting factor of radial growth in the study mountainous area, especially for fir. Fir was significantly sensitive to late frost, respectively, spruce to winter desiccation and spring droughts with synergism of air pollution load. Generally, older forest stands were more negatively influenced by air pollution load and climatic extremes compared to young trees.