Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Tomasz Zinko x
Clear All Modify Search
Open access

Paulina Pianko-Oprych, Tomasz Zinko and Zdzisław Jaworski

Abstract

The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC) design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD) tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.

Open access

Paulina Pianko-Oprych, Tomasz Zinko and Zdzisław Jaworski

Abstract

The aim of this study was to highlight the interest of using CFD technique as a diagnostic tool of a malfunctioning Solid Oxide Fuel Cells. Hydrogen starvation of a SOFC due to nitrogen dilution is one of the cell dysfunctions and can lead to its degradation. Identification of the starvation point allows to improve cell performance and establish the best conditions for degradation tests. To illustrate a potential of the CFD tool, several simulations of a single planar SOFC and its behaviour under hydrogen starvation were performed and analysed. The results showed that at lower cell voltage values of 0.3 and 0.5 V significant gradients in the electric current were noticed due to a local reduction in hydrogen concentration. The CFD analysis allowed defining desirable mass flow rate of hydrogen to SOFCs to avoid fuel starvation. The model constitutes a helpful tool for optimizing cell design and operational conditions.

Open access

Paulina Pianko-Oprych, Tomasz Zinko and Zdzisław Jaworski

Abstract

The aim of the work was to develop a mathematical model for computing the steady-state voltage – current characteristics of a planar Solid Oxide Fuel Cell and to determine the performance of a new SOFC design. The design involves cross-flow bipolar plates. Each of the bipolar plates has an air channel system on one side and a fuel channel system on the other side. The proposed model was developed using the ANSYS-Fluent commercial Computational Fluid Dynamics (CFD) software supported by additional Fuel Cell module. The results confirm that the model can well simulate the diagonal current path. The effects of temperature and gas flow through the channels and a Membrane Electrode Assembly (MEA) structure were taken into account. It was shown that a significant increase of the MEA temperature at high current density can lead to hot spots formation and hence electrode damage.