Search Results

1 - 9 of 9 items

  • Author: Teresa Więsak x
Clear All Modify Search
Comparison of Artificial Neural Networks and Logistic Regression Analysis in Pregnancy Prediction Using the In Vitro Fertilization Treatment

Abstract

Infertility is recognized as a major problem of modern society. Assisted Reproductive Technology (ART) is the one of many available treatment options to cure infertility. However, the efficiency of the ART treatment is still inadequate. Therefore, the procedure’s quality is constantly improving and there is a need to determine statistical predictors as well as contributing factors to the successful treatment. There is a concern over the application of adequate statistical analysis to clinical data: should classic statistical methods be used or would it be more appropriate to apply advanced data mining technologies? By comparing two statistical models, Multivariable Logistic Regression analysis and Artificial Neural Network it has been demonstrated that Multivariable Logistic Regression analysis is more suitable for theoretical interest but the Artificial Neural Network method is more useful in clinical prediction.

Open access
Analyzing Outcomes of Intrauterine Insemination Treatment by Application of Cluster Analysis or Kohonen Neural Networks

Abstract

Intrauterine insemination (IUI) is one of many treatments provided to infertility patients. Many factors such as, but not limited to, quality of semen, the age of a woman, and reproductive hormone levels contribute to infertility. Therefore, the aim of our study is to establish a statistical probability concerning the prediction of which groups of patients have a very good or poor prognosis for pregnancy after IUI insemination. For that purpose, we compare the results of two analyses: Cluster Analysis and Kohonen Neural Networks. The k-means algorithm from the clustering methods was the best to use for selecting patients with a good prognosis but the Kohonen Neural Networks was better for selecting groups of patients with the lowest chances for pregnancy.

Open access
Significance of Discriminant Analysis in Prediction of Pregnancy in IVF Treatment

Abstract

Many factors play an important role in prediction of infertility treatment outcome (for example, female age and quality of oocytes or embryos are the most important prognostic factors concerning positive IVF outcome). The purpose of this study was to identify a set of variables that could fulfill criteria for prediction of pregnancy in IVF patients through the application of data mining – using the discriminant analysis method. The principle of this method is to establish a set of rules that allows one to place multi-dimensional objects into one of two analyzed groups (pregnant or not pregnant). Six hundred and ten IVF cycles were included in the analysis and the following variables were taken into consideration: female age, number and quality of retrieved oocytes, number and quality of embryos, number of transferred embryos, and outcome of treatment. Discriminant analysis allowed for the creation of a model with a 51.22% correctness of prediction to achieve pregnancy during IVF treatment and with 74.07% correctly predicted failure of pregnancy. Therefore, the created model is more suitable for the prediction of a negative outcome (lack of pregnancy) during IVF treatment and offers an option for adjustments to be made during infertility treatment.

Open access
Prediction of Infertility Treatment Outcomes Using Classification Trees

Abstract

Infertility is currently a common problem with causes that are often unexplained, which complicates treatment. In many cases, the use of ART methods provides the only possibility of getting pregnant. Analysis of this type of data is very complex. More and more often, data mining methods or artificial intelligence techniques are appropriate for solving such problems. In this study, classification trees were used for analysis. This resulted in obtaining a group of patients characterized most likely to get pregnant while using in vitro fertilization.

Open access
The Use of Principal Component Analysis and Logistic Regression in Prediction of Infertility Treatment Outcome

Abstract

Principal Component Analysis is one of the data mining methods that can be used to analyze multidimensional datasets. The main objective of this method is a reduction of the number of studied variables with the mainte- nance of as much information as possible, uncovering the structure of the data, its visualization as well as classification of the objects within the space defined by the newly created components. PCA is very often used as a preliminary step in data preparation through the creation of independent components for further analysis. We used the PCA method as a first step in analyzing data from IVF (in vitro fertilization). The next step and main purpose of the analysis was to create models that predict pregnancy. Therefore, 805 different types of IVF cy- cles were analyzed and pregnancy was correctly classified in 61-80% of cases for different analyzed groups in obtained models.

Open access
The Application of Multinomial Logistic Regression Models for the Assessment of Parameters of Oocytes and Embryos Quality in Predicting Pregnancy and Miscarriage

Abstract

Infertility is a huge problem nowadays, not only from the medical but also from the social point of view. A key step to improve treatment outcomes is the possibility of effective prediction of treatment result. In a situation when a phenomenon with more than 2 states needs to be explained, e.g. pregnancy, miscarriage, non-pregnancy, the use of multinomial logistic regression is a good solution. The aim of this paper is to select those features that have a significant impact on achieving clinical pregnancy as well as those that determine the occurrence of spontaneous miscarriage (non-pregnancy was set as the reference category). Two multi-factor models were obtained, used in predicting infertility treatment outcomes. One of the models enabled to conclude that the number of follicles and the percentage of retrieved mature oocytes have a significant impact when prediction of treatment outcome is made on the basis of information about oocytes. The other model, built on the basis of information about embryos, showed the significance of the number of fertilized oocytes, the percentage of at least 7-cell embryos on day 3, the percentage of blasts on day 5, and the day of transfer.

Open access
The Use of Log-linear Analysis for Pregnancy Prediction

Abstract

Log-linear analysis is a practical tool for examining relationships, successfully applied in many fields of science. This paper discusses the topic of estimation of the chance of getting pregnant in couples that underwent ART insemination. The authors focus on finding significant interactions between variables, on the basis of which statistical models are built. With the use of results of log-linear analysis, a model predicting the chances of achieving a clinical pregnancy that contained interactions was successfully built. Moreover, it was more complete than the model obtained with the use of logistic regression alone.

Open access
Classification of Patients Treated for Infertility Using the IVF Method

Abstract

One of the most effective methods of infertility treatment is in vitro fertilization (IVF). Effectiveness of the treatment, as well as classification of the data obtained from it, is still an ongoing issue. Classifiers obtained so far are powerful, but even the best ones do not exhibit equal quality concerning possible treatment outcome predictions. Usually, lack of pregnancy is predicted far too often. This creates a constant need for further exploration of this issue. Careful use of different classification methods can, however, help to achieve that goal.

Open access
Application of Artificial Neural Networks and Principal Component Analysis to Predict Results of Infertility Treatment Using the IVF Method

Abstract

There are high hopes for using the artificial neural networks (ANN) technique to predict results of infertility treatment using the in vitro fertilization (IVF) method. Some reports show superiority of the ANN approach over conventional methods. However, fully satisfactory results have not yet been achieved. Hence, there is a need to continue searching for new data describing the treatment process, as well as for new methods of extracting information from these data. There are also some reports that the use of principal component analysis (PCA) before the process of training the neural network can further improve the efficiency of generated models. The aim of the study herein presented was to verify the thesis that the use of PCA increases the effectiveness of the prediction by ANN for the analysis of results of IVF treatment. Results for the PCA-ANN approach proved to be slightly better than the ANN approach, however the obtained differences were not statistically significant.

Open access