Search Results

1 - 3 of 3 items

  • Author: Taras Bobalo x
Clear All Modify Search

Abstract

The use of computers provides the opportunity to analyse and design complex structures, taking into account the geometric and physical nonlinearity of construction materials. In the article the study of stress-strain state of mixed steel-concrete beams, were presented. The results of this study showed that the method of calculation according to designe codes gave satisfactorily results of calculated strength compared with experiments. However, these methodes do not provide complete information of structural performance at all levels of load. For a more complete study of the stress-strain state and the physical nature of the processes occurring in steel-concrete structures reinforced with a mixed reinforcement, the calculation method using “Lira” software complex is proposed. The method of calculation is based on the finite element method. The calculation is made taking into account physical nonlinearity and real diagrams of σ-ε of materials using the nonlinear deformation law №14 of “Lira” software complex. The proposed method of calculation allows to determine the values of bearing capacity, the development of deformations and the beginning of crack formation, as well as stresses at all load levels.

Abstract

In this work on the basis of the developed and tested mathematical model, the numerical experiment is conducted in order to study in more detail the specifics of performance of concrete beams` with combined reinforcement. For this purpose nine series of reinforced concrete beams with different combination of steel bars (A400C, At800, A1000) and ribbon reinforcement (C275) were modeled. In the developed series two classes of concrete were used: C50/60, C35/45. The functions derived on the basis of mathematical modeling allow us to determine the recommended percentage of high-strength reinforcement of common reinforced concrete structures with single reinforcement. Therefore, the possibility is obtained to reduce the total structures` reinforcement percentage, increasing their deformability by the specified value without affecting the bearing capacity.