Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Tadeusz Chmielniak x
Clear All Modify Search
Open access

Tadeusz Chmielniak and Henryk Łukowicz

Condensing power plant cycle — assessing possibilities of improving its efficiency

This paper presents a method for assessing the degree of approaching the paper output of the Clausius-Rankine cycle to the Carnot cycle. The computations to illustrate its use were performed for parameters characteristic of the current state of development of condensing power plants as well as in accordance with predicted trends for their further enhancing. Moreover there are presented computations of energy dissipation in the machines and devices working in such a cycle.

Open access

Tadeusz Chmielniak and Piotr Krzyślak

Comparative analysis of energy potential of three ways of configuration of a condenser power plant thermal cycle

A theoretical, comparative analysis of three configuration ways of a condenser power plant thermal cycle is shown in the work. A new regeneration & separation preheater and its application in a thermal cycle is presented. Results obtained allow to compare all three analysed configurations efficiencies.

Open access

Włodzimierz Wróblewski, Sławomir Dykas and Tadeusz Chmielniak

Models for water steam condensing flows

The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.

Open access

Tadeusz Chmielniak, Sebastian Lepszy and Daniel Czaja

The use of air-bottoming cycle as a heat source for the carbon dioxide capture installation of a coal-fired power unit

The installations of CO2 capture from flue gases using chemical absorption require a supply of large amounts of heat into the system. The most common heating medium is steam extracted from the cycle, which results in a decrease in the power unit efficiency. The use of heat needed for the desorption process from another source could be an option for this configuration. The paper presents an application of gas-air systems for the generation of extra amounts of energy and heat. Gas-air systems, referred to as the air bottoming cycle (ABC), are composed of a gas turbine powered by natural gas, air compressor and air turbine coupled to the system by means of a heat exchanger. Example configurations of gas-air systems are presented. The efficiency and power values, as well as heat fluxes of the systems under consideration are determined. For comparison purposes, the results of modelling a system consisting of a gas turbine and a regenerative exchanger are presented.

Open access

Sławomir Dykas, Włodzimierz Wróblewski, Sebastian Rulik and Tadeusz Chmielniak

Abstract

In this paper, numerical results of modeling of acoustic waves propagation are presented. For calculation of the acoustic fluctuations, a solution of the full non-linear Euler equation is used. The Euler equations are solved with the use of a numerical scheme of third-order accuracy in space and time. The paper shows a validation process of the described method. This method is suitable also for an aerodynamic noise assessment on the basis of unsteady mean flow field data obtained from a CFD calculations. In such case this method is called a hybrid CFD/CAA method. The proposed method is numerically decoupled with CFD solution, therefore the information about the mean unsteady flow field can be obtained using an arbitrary CFD method (solver). The accuracy of the acoustic field assessment depends on the quality of the CFD solutions. This decomposition reduces considerably the computational cost in comparison with direct noise calculations.

The presented Euler acoustic postprocessor (EAP) has been used for modeling of the acoustic waves propagation in a cavity and in the flow field around a cylinder and an aerodynamic profile.

Open access

Krzysztof Bochon and Tadeusz Chmielniak

Abstract

In the study an accurate energy and economic analysis of the carbon capture installation was carried out. Chemical absorption with the use of monoethanolamine (MEA) and ammonia was adopted as the technology of carbon dioxide (CO2) capture from flue gases. The energy analysis was performed using a commercial software package to analyze the chemical processes. In the case of MEA, the demand for regeneration heat was about 3.5 MJ/kg of CO2, whereas for ammonia it totalled 2 MJ/kg CO2. The economic analysis was based on the net present value (NPV) method. The limit price for CO2 emissions allowances at which the investment project becomes profitable (NPV = 0) was more than 160 PLN/Mg for MEA and less than 150 PLN/Mg for ammonia. A sensitivity analysis was also carried out to determine the limit price of CO2 emissions allowances depending on electricity generation costs at different values of investment expenditures.

Open access

Tadeusz Chmielniak, Daniel Czaja and Sebastian Lepszy

Abstract

A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

Open access

Tadeusz Chmielniak, Paweł Mońka and Paweł Pilarz

Abstract

This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K) at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.