Search Results

You are looking at 1 - 8 of 8 items for

  • Author: T. Lipiński x
Clear All Modify Search
Open access

T. Lipiński and A. Wach

The Effect of the Production Process and Heat Processing Parameters on the Fatigue Strength of High-Grade Medium-Carbon Steel

The experimental material consisted of semi-finished products of high-grade, medium-carbon constructional steel with: manganese, chromium, nickel, molybdenum and boron. The experimental material consisted of steel products obtained in three metallurgical processes: electric and desulfurized (E), electric and desulfurized with argon-refined (EA) and oxygen converter with vacuum degassed of steel (KP). The production process involved two melting technologies: in a 140-ton basic arc furnace with desulphurisation and argon refining variants, and in a 100-ton oxygen converter. Billet samples were collected to analyze: relative volume of impurities, microstructure and fatigue tests. The samples were quenched and austenitized at a temperature of 880°C for 30 minutes. They were then cooled in water and tempered by holding the sections at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of microstructural analyses, the distribution of the relative volume of impurities in different size ranges, the fatigue strength characteristics of different production processes, the average number of sample-damaging cycles and the average values of the fatigue strength coefficient for various heat processing options.

Open access

T. Lipiński and A. Wach

Abstract

The article discusses the results of a study investigating the effect of the number of fine non-metallic inclusions (up to 2 µm in size) on the fatigue strength of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing.

Steel sections with a diameter of 18 mm were hardened and tempered at a temperature of 200, 300, 400, 500 and 600°C. The experimental variants were compared in view of the applied melting technology and heat treatment options. The results were presented graphically, and the fatigue strength of steel with a varied share of non-metallic inclusions was determined during rotary bending. The results revealed that fatigue strength is determined by the relative volume of fine non-metallic inclusions and tempering temperature.

Open access

T. Lipiński and P. Szabracki

Results of studies on the modification of AlSi7Mg alloy with an exotherimc modifier are presented in the paper. MgO, Cr2O3, Na2O2, NaNO3, Na2MoO4 were used as modifiers in the amount of 0.05, 0.10, 0.15, 0.20 and 0.25%, and Cr2O3+Al, NaNO3+Al, Na2MoO4+Al were applied as exothermic modifiers with Al as the reducing agent in the amount of 0.04-0.3%. The analyzed modifiers were incorporated in line with factorial design 23. The Inmold modification method was applied. The microstructure of selected modified alloys was presented, and their tensile strength, percentage elongation and Brinell hardness number were given in graphic form. The results of the study indicate that the use of modifiers delivering an exothermic effect influences the effectiveness of silumin modification.

Open access

T. Lipiński

Abstract

The microstructure of an unmodified AlSi9Mg alloy comprises large primary α phase dendrites, eutectic β phase crystals and eutectic α phase. This composition is responsible for the alloy’s low strength parameters, and it limits the extent of practical applications. The mechanical properties of hypoeutectic silumins can be improved through chemical modification as well as traditional or technological processing. Modification improves the mechanical properties of alloys through grain refinement. This study presents the results of double modification of an AlSi9Mg alloy with strontium, boron and titanium. The influence of the analyzed modifiers on the microstructure and mechanical properties of the processed alloy was presented in graphs. The modification of a hypoeutectic AlSi9Mg alloy improved the alloy’s properties. The results of the tests indicate that the mechanical properties of the modified alloy are determined by the sequence in which the components are introduced to the alloy.

Open access

T. Lipiński and A. Wach

Abstract

Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argonrefined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess them operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.

Open access

T. Lipiński

Abstract

The article discusses the effect of distance between submicroscopic oxide impurities (up to 2 μm in size) on the fatigue resistance coefficient of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Furthermore seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing.

Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C. The experimental variants were compared in view of the applied melting technology and heat treatment options. The results were presented graphically and mathematically. The fatigue resistance coefficient of structural steel with the effect of spacing between submicroscopic oxide impurities was determined during rotary bending. The results revealed that fatigue resistance coefficient k is determined by the distance between submicroscopic non-metallic inclusions and tempering temperature.

Open access

T. Lipiński, A. Wach and E. Detyna

Abstract

The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized.

The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form.

This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.

Open access

P. Matysik, M. Chojnacki, S. Jóźwiak, T. Czujko and S. Lipiński

In this paper the possibility of using X-ray computed tomography (CT) in quantitative metallographic studies of homogeneous and composite materials is presented. Samples of spheroidal cast iron, Fe-Ti powder mixture compact and epoxy composite reinforced with glass fibers, were subjected to comparative structural tests. Volume fractions of each of the phase structure components were determined by conventional methods with the use of a scanning electron microscopy (SEM) and X-ray diffraction (XRD) quantitative analysis methods. These results were compared with those obtained by the method of spatial analysis of the reconstructed CT image. Based on the comparative analysis, taking into account the selectivity of data verification methods and the accuracy of the obtained results, the authors conclude that the method of computed tomography is suitable for quantitative analysis of several types of structural materials.