Search Results

You are looking at 1 - 2 of 2 items for

  • Author: T. Brylewski x
Clear All Modify Search
Open access

A. Kruk, M. Stygar, T. Brylewski and K. Przybylski

The ferritic AL453 steel is one of potential metallic interconnect materials for intermediate-temperature solid oxide fuel cells. However, the evaporation of chromium from the chromia scale formed on this steel and the increasing thickness of this scale result in the slow deterioration in the electrical properties of the interconnect’s elements. In order to improve fuel cell efficiency, the surface of the interconnect material was modified by applying a protective-conducting Mn1.5Co1.5O4 spinel coating. Thermal and electrical tests of the La0.8Sr0.2FeO3 cathode - AL453/Mn1.5Co1.5O4 interconnect system at 1073 K for 200 hrs in air confirmed the effectiveness of the spinel layers as a means of stopping chromium diffusion from the AL453 steel and inhibiting oxidation, while at the same time promoting electrical contact and minimizing cathode-interconnect interfacial resistance.

Open access

K. Przybylski, J. Prazuch, T. Brylewski and E. Durda

The goal of this work is to determine the effect of niobium on the kinetics and mechanism of Ti-Al oxidation in air. In order to compare the oxidation kinetics of Ti-Al and Ti-Al with the addition of niobium, isothermal oxidation was performed on Ti-48Al and Ti-46Al-8Nb (in at.%) alloys at 1073 K in synthetic air. Cyclic oxidation of Ti-46Al and Ti-46Al-8Nb alloys was carried out in laboratory air for 42 cycles (1 cycle, 24 hrs). The morphology, as well as chemical and phase composition of the oxidation products were investigated using X-ray Diffraction (XRD) and Scanning Electron Microscopy combined with Energy Dispersive Spectroscopy (SEM-EDS). From these investigations it can be concluded that niobium addition increases the corrosion resistance of TiAl and, furthermore, improves the adherence between the metallic substrate and the oxide scale. The oxidation mechanism of Ti-46Al-8Nb was studied via secondary neutral mass spectroscopy (SNMS) after two-stage isothermal oxidation (24 hrs in 16O2 followed by 24 hrs in 18O2) at 1073 K. From this analysis it can be assumed that the oxidation mechanism of Ti-46Al-8Nb alloy consists of simultaneous outward titanium and aluminum diffusion and inward oxygen transport.