Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Szende Vancea x
Clear All Modify Search
Open access

George Jîtcă, Bianca-Eugenia Ősz, Szende Vancea, Amalia Miklos and Amelia Tero-Vescan

Abstract

Objective: The purpose of this study was to develop a LC-MS method to determine amiodarone (AMI) and its major metabolite desethylamiodarone (DEA) from rat plasma released from the adipose tissue of AMI treated rats subjected to a weight gain/weight loss cycle. Methods: Separation of the compounds was performed on a Kinetex 2.6 μm C18 100 x 4.6 mm column under isocratic conditions using a mixture of acetonitrile: 0.1% formic acid 65:35 at a flow rate of 0.5 ml/min. Detection of the analyte was performed by electrospray positive ionization, the monitored ions being 135 m/z from 646 for AMI and 135 m/z of 618 for DEA. Analytes were extracted after plasma protein precipitation with methanol. Results: The developed method presented specificity and linearity on the concentration range of 25-2500 ng/ml plasma for AMI and 2.5-1250 ng/ml plasma for DEA and the precision and accuracy of the method at all of quality control concentration levels including LLOQ were according to official guidelines for validating analytical methods. Conclusions: A sensitive and accurate LC-MS method has been developed with a much lower LLOQ than literature data to detect the plasma concentration differences of the studied analytes that result from forced lipolysis and mobilization from the adipose tissue.

Open access

Dan Andonie, Zsolt Gáll, Paul Bosa, Maria Titica Dogaru and Szende Vancea

Abstract

An uncomplicated, sensitive liquid chromatography linked to mass spectrometry (LC/MS) for evaluation of carbamazepine and carbamazepine-10,11-epoxide (its metabolite) in human plasma, human saliva, rat plasma, and rabbit plasma was developed. Analyses were conducted on a Zorbax SB-C18, 100 mm × 3 mm ID, 3.5 μm column, at a column temperature of 40 ºC. The mobile phase was comprised of 0.1% formic acid in water and methanol in a 35 : 65 (v/v) ratio, with a flow rate of 0.4 mL/min. Lacosamide was utilized as internal standard. Under these chromatographic conditions, the retention times of lacosamide, carbamazepine-10,11-epoxide, and carbamazepine were 1.4 min, 1.6 min, and 2.2 min, respectively. The quantification of the analytes was performed using multiple reaction monitoring, with the use of a triple quadrupole mass spectrometer with electrospray positive ionization. The monitored ions were m/z 194 derived from m/z 237 for carbamazepine, m/z 180 derived from m/z 253 for carbamazepine-10,11-epoxide, and m/z 108 derived from m/z 251 for lacosamide. The samples were prepared by protein precipitation from 0.2 mL of plasma/saliva using 0.6 mL of internal standard solution in methanol. Calibration curves were constructed over the ranges 1.1–17.6 µg/mL and 0.23–5.47 µg/mL for carbamazepine and carbamazepine-epoxide, respectively. The coefficients of determination obtained by using a weighted (1/x) linear regression were greater than 0.994. The reported LC-MS/MS method was applied to preclinical pharmacokinetic studies and therapeutic drug monitoring.

Open access

Silvia Imre, Timea Haidu, Oana Ponta, Szende Vancea, Camil-Eugen Vari and Amelia Tero-Vescan

Abstract

Objective: The aim of the study was a comparative investigation by spectral and thermal analysis in order to asses a number of characteristics of different varieties ofrawmaterials of ursodeoxycholic acid and ibuprofen. The different dissolution behavior of two ursodeoxycholic acid pharmaceutical product by crystallinity pattern was investigated. Methods: Raw materials of ursodeoxycholic acid and ibuprofen were used. IR spectroscopy, differential scanning calorimetry and X-Ray Diffraction Analysis were applied. Results: The results show no crystallinitydifferences for different batches of the tested drugs. No solid solid transition was proved during sample preparation for transmission IR analysis. Conclusions: A combination of two more affordabletests by IR spectrometry and differential scanning calorimetry lead to the same results as X-Ray diffraction analysis for crystallinity similarity assessment of the studied substances. The dissolution differences of test drugs were not related to the polymorphism of the raw materials.

Open access

Aura Rusu, Gabriel-Cosmin Popescu, Silvia Imre, Valentin Ion, Szende Vancea, Anda-Lavinia Grama, Hajnal Kelemen and Gabriel Hancu

Abstract

Objective: Silver complexes of antibacterial quinolones have the potential advantage of combining the antibacterial activity of silver and fluoroquinolones. The objective of our study was the preparation and the preliminary physico-chemical characterization of a silver complex with ofloxacin.

Methods: To achieve our goals several spectroscopic methods (ultraviolet spectrophotometry, mass spectrometry, and Fourier transform infrared spectroscopy) and thermal methods (differential scanning calorimetry and thermogravimetric analysis) were used in order to elucidate the chemical structure of the complex.

Results: Using mass spectrometry we established the stoichiometric ratio silver:ofloxacin as 1:2. Experimental data suggest a particular coordination for ofloxacin, as a monodentate ligand, in the formation of a complex with silver, through the nitrogen atom from the methyl-piperazine cycle.

Conclusions: The obtained complex has a chemical structure likely [Ag(Ofloxacin)2]NO3, requiring evaluation through other physico-chemical methods.