Search Results

1 - 5 of 5 items

  • Author: Svetlana Bičárová x
Clear All Modify Search

Abstract

Extreme wind event in November 2004 caused spacious destruction of slope forests in the Tatra National Park, Slovakia. Relevant changes of land cover motivated researchers to investigate damaged forest ecosystem and its response to different environmental conditions. Surface ozone (O3) is a minor but not negligible compound of the ambient air. Control strategies for the reduction of O3 precursor emissions have been applied in Europe during the last two decades. In spite of these reductions, air quality indices for O3 suggest that highland sites are more vulnerable to health and environmental risk than lowlands where mostly emissions from road transport and industry are produced. Both anthropogenic sources and biogenic precursors (BVOC) from forest vegetation play a relevant role in the tropospheric photochemistry, especially at mountainous and rural locations. The parameters of air quality are measured at background station Stará Lesná in the High Tatras region since 1992 in frame of an European project EMEP. Long-term data series (1992-2013) of O3 concentrations obtained for site Stará Lesná provide specific opportunity to investigate the response of BVOC reduction on O3 variability after windstorm 2004. Evaluation of these data indicates moderate increase of annual, monthly and hourly O3 means for the period from 2005 to 2013 in comparison with the previous period 1992-2004. Temporal interpolation shows evident changes of O3 concentrations, especially ~30% increase for night hours in spring season and on the contrary ~15% decrease for daylight afternoon hours in summer season. Statistically significant changes were identified for spring months (April and May, 0-6 hours) and summer months (July, 12-20 hours). Increasing O3 values in the night may be associated with the absence of BVOC for ozonolysis reaction that is one of the mechanism for O3 depletion. On the other hand, the decline of daylight O3 values in summer suggests lower O3 production via photochemical mechanism.

Abstract

In this work, the response of temperate coniferous forests to ozone air pollution (O3) in the mountain environment of the High Tatra Mts. (Western Carpathians) was analyzed. The modelling of stomatal O3 flux is a complex method for the estimation of phytotoxicity of O3 pollution to forest vegetation. Stomatal flux-based critical levels (CLef) for effects of O3 on radial growth take into account the varying influences of O3 concentration, meteorological variables, soil properties, and phenology. The application of the model DO3SE (Deposition of Ozone for Stomatal Exchange) at five experimental plots with altitudes varying from 810 to 1,778 m a.s.l. along vertical and spatial profile in the High Tatra Mts. revealed the high phytotoxic potential of O3 on spruce forests during the growing season 2014. The accumulated stomatal O3 flux above a threshold of Y (1 nmol m−2 s−1), i.e. POD1 (Phytotoxic Ozone Dose) ranged from 13.6 mmol m−2 at the Kolové pleso site (1,570 m a.s.l.) to 16.2 mmol m−2 at Skalnaté Pleso site (1,778 m a.s.l.). CLef for POD1 (8 mmol m−2) recommended for the protection of spruce forests were exceeded at all experimental plots from early July. Similarly, AOT40 index suggests vulnerability of mountain forests to O3 pollution. AOT40 values increased with altitude and reached values varying from 6.2 ppm h in Stará Lesná (810 m a.s.l.) to 10.7 ppm h at Skalnaté Pleso close to the timber line (1,778 m a.s.l.). Concentration-based critical level (CLec) of 5,000 ppb h was exceeded from June to August and was different for each experimental site.

Abstract

The paper presents the results of a 23-year study of sulphate sulphur dynamics in beech ecosystems exposed to different immission loads. The amounts of S-SO4 2− in precipitation water entering the ecosystems were: the Kremnické vrchy Mts, a clear-cut area 519 kg ha−1 (24.7 kg ha−1 per year), a beech forest 476 kg ha−1 (22.7 kg ha−1 per year); the Štiavnické vrchy Mts an open place 401 kg ha−1 (24.6 kg ha−1 per year), a beech forest 324 kg ha−1 (19.1 kg ha−1 per year). The average SO4 2− concentrations in lysimetric solutions penetrating through surface humus to a depth of Cambisol 10 and 25 cm were increased as follows: in the Kremnické vrchy Mts from 12.71 to 16.17 mg l−1 and in the Štiavnické vrchy Mts from 18.73 to 28.80 mg l−1. The S-SO4 −2 amounts penetrating the individual soil layers in the Kremnické vrchy Mts were as follows: in case of surface humus on clear-cut area 459 kg ha−1 (20.9 kg ha−1 per year), in beech forest 433 kg ha−1 (19.7 kg ha−1 per year); below 10 cm organo-mineral layer of the mentioned plots penetrated 169–171 kg ha−1 (7.7–7.8 kg ha−1 per year), and below 25 cm mineral layer 155–255 kg ha−1 (7.1−11.6 kg ha−1 per year) – a higher amount was found on clear-cut area with an episodic lateral flow of soil solutions. In beech forest of the Štiavnické vrchy Mts penetrated below surface humus 424 kg ha−1 S-SO4 2− (18.9 kg ha−1 per year), below 10 cm mineral layer 458 kg ha−1 S-SO4 2− (19.9 kg ha−1 per year), and below 25 cm mineral layer as much as 599 kg ha−1 S-SO4 2− (26.0 kg ha−1 per year). This fact was caused by frequent lateral flow of soil solutions. The results indicate that the assumption about lower immission load of the beech ecosystem in the Kremnické vrchy Mts is wrong, at least in the case of S-SO4 2−. The testing has revealed that the studied beech ecosystems differ very significantly in sulphur amounts penetrating under 0.10 m and 0.25 m. The inter-annual differences were insignificant.

Abstract

We analyse water balance, hydrological response, runoff and snow cover characteristics in the Jalovecký Creek catchment (area 22 km2, mean elevation 1500 m a.s.l.), Slovakia, in hydrological years 1989–2018 to search for changes in hydrological cycle of a mountain catchment representing hydrology of the highest part of the Western Carpathians. Daily air temperature data from two meteorological stations located in the studied mountain range (the Tatra Mountains) at higher elevations show that the study period is 0.1°C to 2.4°C warmer than the climatic standard period 1951–1980. Precipitation and snow depth data from the same stations do not allow to conclude if the study period is wetter/drier or has a decreasing snow cover. Clear trends or abrupt changes in the analysed multivariate hydrometric data time series are not obvious and the oscillations found in catchment runoff are not coherent to those found in catchment precipitation and air temperature. Several time series (flashiness index, number of flow reversals, annual and seasonal discharge maxima, runoff coefficients) indicate that hydrological cycle is more dynamic in the last years of the study period and more precipitation runs off since 2014. The snow cover characteristics and climatic conditions during the snow accumulation and melting period do not indicate pronounced changes (except the number of days with snowfall at the Kasprowy Wierch station since 2011). However, some data series (e.g. flow characteristics in March and June, annual versus summer runoff coefficients since 2014) suggest the changes in the cold period of the year.

Abstract

This study is focused on the research of selected Pinus species exposed to high ozone concentrations in the mountain environment. We noticed different values of modelled ozone doses (MOD) up-taken by Mountain pine (Pinus mugo Turra) in the High Tatra Mts (SK–HTMts) and Swiss stone pine (Pinus cembra L.) in the Alpes-Mercantour (FR–AlpMar) during the growing season 2019. The MOD values were obtained by multiplicative DO3SE model, while we also tested a new approach based on modification of input ozone data. The MOD values were obtained by multiplicative DO3SE model, while we also tested a new approach based on modification of input ozone data. Testing has shown that ozone input based on passive sampling may be used in MOD modelling for sites situated in the subalpine zone where the operation of active monitors is limited.. Presented results confirmed the assumption regarding stomatal ozone flux reduction due to the occurrence of soil drought in hot and dry summer weather typical for the Mediterranean climate region. Despite the limitation of stomatal flux, foliar ozone specific injury on two years needles of P. cembra was substantially higher in comparison to the incidence of ozone injury symptoms observed on two years needles of P. mugo in SK–HTMts. It may suggest low phytotoxicity of given MOD or efficient resistance of P. mugo against oxidative stress. In addition, the visible injury index (VINX) covering the broad effect of biotic and abiotic harmful agents was appraised on P. mugo. Percentage of affected surface indicated moderate deterioration of needle injury at the end of the growing season, particularly due to traces of mechanical damage.