Search Results

1 - 4 of 4 items

  • Author: Steffen Leonhardt x
Clear All Modify Search
Development of a real-time, semi-capacitive impedance phlebography device

Abstract

Chronic venous insufficiency of the lower limbs is a disease which is caused by an increased blood pressure inside the veins of the leg and the resulting increase of the contained blood volume. This work focuses on developing a device which uses impedance plethysmography, also known as impedance phlebography, to obtain information about the blood volume in the lower leg and provides the possibility to measure the impedance semi contact-less, e.g. through compression stockings. Furthermore a real-time beat-to-beat interval detection algorithm was implemented. Finally, the function of the developed impedance measuring system and the whole system was verified by comparing it with a gold standard. In comparison to the conductive coupling, the system performed similarly. The analysis showed that the developed system is suitable for semi-capacitive IPG. The algorithm was implemented conservatively since it provided a good false-positive rate of 0 %, but only a moderate sensitivity of about 68 %. Reliable and continuous measurement of the pulse signal was only possible in periods of immobility.

Open access
Three-dimensional pulmonary monitoring using focused electrical impedance measurements

Abstract

Lung pathologies such as edema, atelectasis or pneumonia are potentially life threatening conditions. Especially in critically ill and mechanically ventilated patients, an early diagnosis and treatment is crucial to prevent an Acute Respiratory Distress Syndrome [1]. Thus, continuous monitoring tool for the lung condition available at the bedside would be highly appreciated. One concept for this is Electrical Impedance Tomography (EIT). In EIT, an electrode belt of typically 16 or 32 electrodes is attached at the body surface and multiple impedance measurements are performed. From this, the conductivity change inside the body is reconstructed in a two-dimensional image. In various studies, EIT proved to be a useful tool for quantifying recruitment maneuvers, the assessment of the ventilation homogeneity, the detection of lung edema or perfusion monitoring [2, 3, 4, 5]. Nevertheless, the main problem of EIT is the low spatial resolution (compared to CT) and the limitation to two dimensional images. In this paper, we try to address the latter issue: Instead of projecting conductivity changes onto a two-dimensional image, we adjust electrode positions to focus single tetrapolar measurements to specific, three-dimensional regions of interest. In earlier work, we defined guidelines to achieve this focusing [6, 7]. In this paper, we demonstrate in simulations and in a water tank experiment that applying these guidelines can help to detect pathologies in specific lung regions.

Open access
Knee-to-knee bioimpedance measurements to monitor changes in extracellular fluid in haemodynamic-unstable patients during dialysis

Abstract

The feasibility of bioimpedance spectroscopy (BIS) techniques for monitoring intradialytic changes in body fluids is advancing. The aim of this study was to compare the knee-to-knee (kkBIS) with the traditional whole-body (whBIS) with respect to continuous assessment of fluid volume status in hemodialysis patients. Twenty patients divided into two groups, hemodynamically stable and unstable, were recruited. Bioimpedance data from two different electrodes configurations (hand-to-foot and knee-to-knee) were collected and retrospectively analysed. A good correlation between the two methods with respect to changes in extracellular resistance (Re) and Re normalized for ultrafiltration volume (ΔRe/UFV) with p < 0.001 was observed. The relationship between relative change (%) in ΔRe and that in patient weight was most notable with kkBIS (4.82 ± 3.31 %/kg) in comparison to whBIS (3.69 ± 2.90 %/kg) in unstable patients. Furthermore, results based on kkBIS showed a reduced ability of the thigh compartments to keep up with the volume changes in the trunk for unstable patients. kkBIS provided a comparable sensitivity to whBIS even in patients at risk of intradialytic hypotension while avoiding the need for the complex implementation imposed by whBIS or other configurations.

Open access
Monitoring Change of Body Fluid during Physical Exercise using Bioimpedance Spectroscopy and Finite Element Simulations

Abstract

Athletes need a balanced body composition in order to achieve maximum performance. Especially dehydration reduces power and endurance during physical exercise. Monitoring the body composition, with a focus on body fluid, may help to avoid reduction in performance and other health problems. For this, a potential measurement method is bioimpedance spectroscopy (BIS). BIS is a simple, non-invasive measurement method that allows to determine different body compartments (body fluid, fat, fat-free mass). However, because many physiological changes occur during physical exercise that can influence impedance measurements and distort results, it cannot be assumed that the BIS data are related to body fluid loss alone. To confirm that BIS can detect body fluid loss due to physical exercise, finite element (FE) simulations were done. Besides impedance, also the current density contribution during a BIS measurement was modeled to evaluate the influence of certain tissues on BIS measurements. Simulations were done using CST EM Studio (Computer Simulation Technology, Germany) and the Visible Human Data Set (National Library of Medicine, USA). In addition to the simulations, BIS measurements were also made on athletes. Comparison between the measured bioimpedance data and simulation data, as well as body weight loss during sport, indicates that BIS measurements are sensitive enough to monitor body fluid loss during physical exercise.

Open access