Search Results

1 - 5 of 5 items

  • Author: Stefan Berczyński x
Clear All Modify Search

Abstract

The article presents a simulation of metal hardness determination by the Rockwell method. The authors describe a physical model of an indenter and the examined sample built by means of the Nastran FX 2010 program using the finite elements method. The modelling included subsequent stages of indenter loads that follow the procedure used in the method. The verifying calculations were made for the results of C45 steel hardness of approx. 20 HRC. Two methods of hardness measurements were analyzed. A diamond cone was used as an indenting tool in one method, a steel ball in the other. As a result of calculations, spatial maps of elastic and plastic strains and stresses were obtained throughout the process. The hardness results obtained from computer simulations and those from experiments involving C45 steel are similar.

Summary

This paper presents an analysis based on a mathematical model of a bias in modal parameter estimators of a machine tool. The analytically determined amplitude-frequency characteristics were disturbed by random noise. The modal parameter estimation process was based on individual characteristics, followed by the determination of a bias in those parameters.

Abstract

The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.

Summary

Most technological machines generate vibrations which are transferred to either support systems or foundations. To ensure an object’s safe operation, it is necessary to have adequate knowledge about dynamic properties of both machines and a supporting construction. A steel-concrete composite floor is an example of a supporting construction. It consists of steel beams connected with a reinforced concrete slab in a way that enables mating of both elements. This paper presents a discreet model of a steel-concrete composite beam that takes into account flexibility of the connection. An analysis of the beam’s natural vibrations was conducted and the results were compared with those of experimental studies. Tests were performed on two sets of beams. In the first group of beams B1 a connection that consisted of steel stud connectors was used whereas perforated steel slats was used in the second groups of beams B2. The present paper is a report from the analysis that was conducted on the beams from group B2. The beam model was developed on Abaqus platform using deformable finite element method. Matlab system was used for the analysis and its environment was applied to control the model development and to identify the model’s selected parameters. The beam model was made in two versions that differ in the approach to modelling connection. The developed model, after parameter identification, yields highly consistent results with those of experimental tests.

Summary

In this paper, a method for estimation of cutting force model coefficients is proposed. The method makes use of regularized total least squares to identify the cutting forces from the measured acceleration signals and the frequency response function (FRF) matrix. An original regularization method is proposed which is based on the relationship between the harmonic components of the cutting forces. Numerical tests are performed to evaluate the effectiveness of the method. The method is compared with unregularized methods and common Tikhonov regularization combined with GCV and L-curve methods. It was found that the proposed method provides more accurate estimates of the cutting force coefficcients than the unregularized method and common regularization techniques. Furthermore the influence of acceleration measurement errors, FRF matrix errors and FRF matrix conditioning on the accuracy of the estimated coefficients is investigated. It was concluded that FRF matrix errors influence the most the accuracy of the results.