Search Results

1 - 4 of 4 items

  • Author: Stanislav Hostin x
Clear All Modify Search
Electrochemical Treatment of Water Contaminated with Methylorange

Abstract

This study examines electrochemical degradation of water artificially contaminated by azo dye Methyl Orange (MO). Degradation is based on chemical electro-oxidation of MO molecules. Graphite was used as an electrode material for electrochemical oxidation of MO. In this work, the different operative parameters (electric current, NaCl content) and their effect on effectiveness as well as the treatment time/duration of MO degradation were tested. The highest dye removal (91.0 %) was obtained during the electrolysis at current density 3.032 mA/cm2, electrolyte with the content of NaCl 4 g/dm3 (NaCl) and the treatment time 35 min.

Open access
CHARACTERIZATION OF SOIL ADDITIVE DERIVED FROM SEWAGE SLUDGE

Abstract

The aim of the present work is to characterize the soil additive derived from sewage sludge as potentially economically acceptable material for agricultural production as well as for soil and environment protection. The soil additive consisting of sewage sludge obtained from the wastewater treatment plant Pannon-Víz Zrt. (Győr, Hungary) and agricultural byproducts represented by wastes from grain mill industry and crushed corn cobs was prepared using the low-capacity granulator equipment constructed by Energy Agency Public Nonprofit Ltd. (Hungary). The characterization of sewage sludge as primary composite and prepared soil additive includes the determination of physico-chemical parameters such as pH determined in suspension with distilled water, 0.01 mol/dm3 CaCl2 or 1 mol/dm3 KCl solutions, pHzpc predicted by potentiometric titration and ProtoFit software, water holding capacity (WHC), cationexchange capacity (CEC) and total organic carbon (TOC). The elemental analysis by X-ray fluorescence spectrometry revealed that sewage sludge as well as prepared soil additive contain significant amount of Zn and Cu as important microelements in plant nutrition. Also, it was found that prepared soil additive represents the considerable source of a significant proportion, strong bound and in this way gradually released microelements. Obtained results suggest on the application potential of prepared soil additive in agricultural production as well as in remediation and reclamation of contaminated or degraded soil.

Open access
Removal Of Contaminants From Aqueous Solutions Using Hop (Humulus Lupulus L.) Agricultural By-Products

Abstract

Agricultural wastes can be used as an alternative to the existing sorbents for the removal of metals or synthetic dyes from contaminated liquids. In this work, the fine powdered biomass of the hop (Humulus lupulus L.) variety Osvald's clone 72 and variety Bohemie as a sorbent for the removal of Cd from aqueous solutions of CdCl2 spiked with radionuclide 109Cd and synthetic dyes thioflavine T (ThT) or methylene blue (MB) from single dye solutions under conditions of batch systems was used. The maximum sorption capacity Q = 264 µmol Cd/g (d.w.) was found in the case of the leaf biomass of hop (H. lupulus L.) variety Osvald's clone 72 at the initial concentration of CdCl2 10,000 µmol/dm3, whereby the sorption capacity decreased in the order Qleaves : Qstems : Qroots = 1.0 : 0.8 : 0.7. The sorbed amount of Cd was removed from the hop biomass with the following increasing desorption efficiency of the extraction reagents: deionised H2O << 0.1 mol/dm3 HCl ≤ 0.1 mol/dm3 EDTA-Na2. Similarly as in the case of Cd sorption, the kinetics of ThT and MB sorption by the leaf biomass of the hop (H. lupulus L.) variety Bohemie were also showed as two-phase processes. The maximum sorption of ThT approx. Q = 19 mg/g (d.w.) and MB approx. Q = 70 mg/g (d.w.) were found within the range of the initial values of pH 4 – 7. The sorption of both dyes by the leaf biomass from single dye solutions decreased with increasing biomass concentration and on the other hand increased with increasing the initial concentrations of ThT or MB. The process of ThT and MB sorption was better described by the Langmuir model than the Freundlich model of sorption isotherm. From the obtained values of Qmax, it was found that in the case of MB the dried leaf biomass showed more than 2-times higher sorption capacity (Qmax = 184 mg/g; d.w.) in comparison with the value predicted for ThT. Obtained results suggest that dried plant biomass of hop (H. lupulus L.) as agricultural by-products can be used as a potential sorbent for both types of studied contaminants.

Open access
Radiocesium Adsorption By Zeolitic Materials Synthesized From Coal Fly Ash

Abstract

Brown coal fly ash derived from the combustion of brown-coal in power plant ENO Nováky (Slovak Republic) was used as raw material for synthesis of zeolitic materials ZM1 and ZM3 by hydrothermal alternation with 1M NaOH and 3M NaOH, respectively. Fly ash and synthesized products were characterized using XRF and SEM-EDX analysis. Subsequently, zeolitic materials were tested as sorbents to remove Cs+ ions from aqueous solutions using radiotracer technique. Sorption of cesium by both types of zeolitic materials obeys Langmuir adsorption isotherm model. The maximum sorption capacities Qmax at pH 6.0 calculated from Langmuir isotherm were 1203 ± 65 μmol Cs+/ g for ZM1 and 1341 ± 66 μmol Cs+/ g for ZM3. The results showed that alkali treated fly ash can be used as effective sorbent for radiocesium removal from contaminated solutions

Open access