Search Results

1 - 2 of 2 items

  • Author: Sou Nobukawa x
Clear All Modify Search


Several hybrid neuron models, which combine continuous spike-generation mechanisms and discontinuous resetting process after spiking, have been proposed as a simple transition scheme for membrane potential between spike and hyperpolarization. As one of the hybrid spiking neuron models, Izhikevich neuron model can reproduce major spike patterns observed in the cerebral cortex only by tuning a few parameters and also exhibit chaotic states in specific conditions. However, there are a few studies concerning the chaotic states over a large range of parameters due to the difficulty of dealing with the state dependent jump on the resetting process in this model. In this study, we examine the dependence of the system behavior on the resetting parameters by using Lyapunov exponent with saltation matrix and Poincaré section methods, and classify the routes to chaos.


Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopamine-modulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.