Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Sophie Zechmeister-Boltenstern x
Clear All Modify Search
Open access

Gernot Bodner, Axel Mentler, Andreas Klik, Hans-Peter Kaul and Sophie Zechmeister-Boltenstern

Summary

Cover cropping is a key agro-environmental measure in Europe. Cover crops may reduce N2O emissions by reducing soil nitrate content, while easily decomposable residues can enhance greenhouse gas losses. In a field study, emissions from the cover cropped fields compared to the fallow at two climatically different sites (semi-arid vs. humid) in Austria were measured with closed chambers and different driving factors were studied. The height of post-cover crop emissions was compared to gaseous losses during the management operations in the subsequent main crop maize. N2O and CO2 emissions following the cover crops were low even at high emission moments compared to the losses induced by the main crop management operations. Highest risk of N2O losses was from mustards due to low C/N ratio and possibly as a consequence of glucosinolate decomposition. CO2 emissions in the cover cropped plots were generally higher compared to the fallow, indicating an enhanced soil microbiological activity. Dissolved organic carbon was found as a sensitive indicator related to the greenhouse gas emissions. We concluded that the environmental benefits from cover cropping are not achieved at the cost of an enhanced greenhouse gas emission and that pure stands of late sown brassica cover crops should be avoided to prevent any risk of increased N2O losses.

Open access

Vilim Filipović, Thomas Weninger, Lana Filipović, Andreas Schwen, Keith L. Bristow, Sophie Zechmeister-Boltenstern and Sonja Leitner

Abstract

Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR). To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP). Sequential modeling using HYDRUS (2D/3D) was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed) and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E) values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM) parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks) decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014) showed that water repellency increases surface runoff in non-structured soils at hillslopes.

Open access

Axel Mentler, Jasmin Schomakers, Stefanie Kloss, Sophie Zechmeister-Boltenstern, Reinhard Schuller and Herwig Mayer

Abstract

Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm−3 and 1.8 g cm−3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.