Search Results

1 - 9 of 9 items

  • Author: Slobodan Jaric x
Clear All Modify Search
Assessment of Hand Function Through the Coordination of Contact Forces in Manipulation Tasks

Exploration of force coordination has been one of the most often used approaches in studies of hand function. When holding and manipulating a hand-held object healthy individuals are typically able to highly coordinate the perpendicular (grip force; GF) with the tangential component of the contact force (load force; LF). The purpose of this review is to present the findings of our recent studies of GF-LF coordination. Regarding the mechanical factors affecting GF-LF coordination, our data suggest that both different hand segments and their particular skin areas could have markedly different friction properties. It also appears that the absolute, rather than relative safety margin (i.e., how much the actual GF exceeds the minimum value that prevents slipping) should be a variable of choice when assessing the applied magnitude of GF. The safety margin could also be lower in static than in free holding tasks. Regarding the involved neural factors, the data suggest that the increased frequency, rather than an increased range of a cyclic LF could have a prominent detrimental effect on the GF-LF coordination. Finally, it appears that the given instructions (e.g., 'to hold' vs. 'to pull') can prominently alter GF-LF coordination in otherwise identical manipulation tasks. Conversely, the effects of handedness could be relatively week showing only slight lagging of GF in the non-dominant, but not in the dominant hand. The presented findings reveal important aspects of hand function as seen through GF-LF coordination. Specifically, the use of specific hand areas for grasping, calculation of particular safety margins, the role of LF frequency (but not of LF range) and the effects of given instructions should be all taken into account when conducting future studies of manipulation tasks, standardizing their procedures and designing routine clinical tests of hand function.

Open access
Force Coordination in Object Manipulation

Force Coordination in Object Manipulation

Purpose: The purpose of this review is to present our recent findings related to the studies of hand function based on the coordination of forces exerted against hand-held objects.

Basic procedures: A novel device has been developed for recording grip (GF; acting perpendicularly at the hand-object contact) and load force (LF; acting tangentially) during uni- and bimanual manipulation tasks performed under either static or dynamic conditions. Both healthy participants and neurological patients were tested. The outcome measures were obtained from the task performance (i.e., the ability to exert accurate LF profiles), GF-LF coordination and GF modulation.

Main findings: The method applied proved to not only to be both reliable and valid, but also sufficient to detect differences between the dominant and non-dominant hand, as well as between healthy participants and mildly involved neurological patients. Marked differences in most of the depended variables were also detected between unidirectional and bi-direction tasks (i.e., in the tasks where LF acts in one and in two alternating directions). The later finding could not be based neural mechanisms known for their role in manipulative actions, such as on employing ad hoc muscle synergies or on the afferent activity of skin mechanoreceptors.

Conclusions: The employed methodological approach can be applied not only to explore various manipulation activities, but also to serve as a basis for future development of specific clinical tests for populations that demonstrate impaired hand function.

Open access
Evaluation of Consecutive Maximum Contractions as a Test of Neuromuscular Function

Evaluation of Consecutive Maximum Contractions as a Test of Neuromuscular Function

The aim of the study was to conduct a preliminary evaluation of consecutive maximum contractions (CMC) as a test of neuromuscular function. Eleven participants performed externally paced isometric CMC (i.e., a series of consecutive maximum force exertions and relaxations) of the quadriceps muscle. The derived variables included the peak forces, and the maximum rates of force development and relaxation. The results revealed high within-day reliability of CMC variables, while their correlations with the jumping performance were consistently higher than those of the variables of the standard strength test (SST). CMC variables also showed fairly stable values across a wide range of frequencies, while their peak force revealed a strong relationship with maximum force of SST despite being about considerably lower. Therefore, we conclude that CMC could be developed into a standard test of neuromuscular function. In addition to capturing the muscle actions based on different neural activation pattern than SST, CMC could also be based on simpler testing procedure, lower force exertion, and self-selected frequencies.

Open access
Alternating Consecutive Maximum Contraction as a Test of Muscle Function in Athletes Following ACL Reconstruction

The novel test based on isometric alternating consecutive maximal contractions performed by two antagonistic muscles has been recently proposed as a test of muscle function in healthy subjects. The aim of this study was to evaluate reliability and sensitivity of a novel test as a test of knee muscles function in athletes recovering from anterior cruciate ligament reconstruction. Fifteen male athletes with recent ligament reconstruction (4.0 ± 0.1 months following the surgery) and 15 sport and physical education students participated in the study. Peak torques of the quadriceps and hamstring muscles assessed both through the alternating consecutive maximal contractions and standard isokinetic test performed at 60 º/s and 180 º/s served for calculation of the hamstrings-to-quadriceps ratio and the bilateral difference in strength. When applied on individuals recovering from anterior cruciate ligament reconstruction, the novel test revealed a high within-day reliability and sensitivity for detecting imbalances both between antagonistic and between contralateral muscles. The present findings suggest that alternating consecutive maximal contractions could be used as a test of muscle function that is either complementary or alternative to the isokinetic test, particularly in the laboratories where the isokinetic devices are not available. Potential advantages of the novel test could be both a brief testing procedure and a possibility to conduct it using relatively inexpensive devices such as custom made kits containing a single one-axis force transducer.

Open access
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

Abstract

The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

Open access
Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

Abstract

The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

Open access
Anthropometric and Physical Performance Profiles of Elite Karate Kumite and Kata Competitors

Anthropometric and Physical Performance Profiles of Elite Karate Kumite and Kata Competitors

Karate tournaments consist of two equally important karate disciplines: the kumite and kata competitions. Due to being based both on the distinctive selection of movement techniques and their kinematic and kinetic patterns, we hypothesized that the elite kumite and kata competitors could differ regarding their anthropometric and physical performance profiles. Thirty-one senior male karate competitors of the national karate team (kumite n = 19; kata n = 12) participated in this study. The tests applied included both the assessment of anthropometric (body height, mass and body mass index) and the following physical performance measurements: the adductor and hamstring flexibility (sideward leg splits test), speed and acceleration (20-m sprint test with 10-m acceleration time), explosive power (countermovement and standing triple jump), agility ("T"- test) and aerobic endurance (20-m multistage shuttle run test). The kumite competitors revealed a larger body size through body height (p = 0.01) and mass (p = 0.03), while the differences in body composition were non-significant. The kumite competitors also demonstrated higher acceleration (p = 0.03) and explosive power (standing triple jump; p = 0.03). A 6-7° higher flexibility of the kata competitors remained somewhat below the level of significance (p = 0.09). The findings could be interpreted by the distinctive differences in the movement techniques. Specifically, a higher explosive power could be beneficial for kumite, while both a smaller stature and higher flexibility (particularly of the lower extremity) could be important for the exceptionally low postures of the kata competitors. Although further elucidation is apparently needed, the obtained finding could be of importance for both the early selection and training of karate competitors.

Open access
Evaluation of the Illinois Change of Direction Test in Youth Elite Soccer Players of Different Age

Abstract

Change of direction ability is an essential pre-requisite in team sports athletes. The Illinois change of direction test has been routinely used for testing change of direction ability in soccer players. The aim of the present study was to evaluate the Illinois change of direction test in young elite soccer players in terms of its reliability, usefulness and relationship with body size. A total of one hundred and ninety-four male, national-level soccer players were recruited. They were classified into four age groups (U-8, U-10, U-12 and U-14). Participants were tested using the Illinois change of direction test twice, and basic indices of body size were obtained. The Illinois change of direction scores showed high relative and absolute reliability in all age groups (all intraclass correlation coefficients were >0.91, and the standard error of measurement was <5%). The usefulness analysis showed that the Illinois change of direction test could detect small changes in performance in the U-10 and U-12 groups. However, it could only detect moderate changes in performance in the U-8 and U-14 groups. Although the Illinois change of direction test detected significant performance differences among groups, scores were not significantly related to body size (-0.30<r<0.15; p > 0.05). Taking into account the test’s high reliability and the appropriate level of usefulness, these results might support the use of the Illinois change of direction test as a standard measure for quantifying change of direction ability in young soccer players.

Open access
Is Test Standardization Important when Arm and Leg Muscle Mechanical Properties are Assessed Through the Force‐Velocity Relationship?

Abstract

The force‐velocity (F‐V) relationship observed in multi‐joint tasks proved to be strong and approximately linear. Recent studies showed that mechanical properties of muscles: force (F), velocity (V) and power (P) could be assessed through the F‐V relationship although the testing methods have not been standardized. The aim of the present study was to evaluate and compare F‐V relationships assessed from two tests performed on a modified Smith machine that standardizes kinematics of the movement pattern. Fifteen participants were tested on the maximum performance bench press throws and squat jumps performed against a variety of different loads. In addition, their strength properties were assessed through maximum isometric force (Fiso) and one repetition maximum (1 RM). The observed individual F‐V relationships were exceptionally strong and approximately linear (r = 0.98 for bench press throws; r = 0.99 for squat jumps). F‐V relationship parameter depicting maximum force (F0) revealed high correlations with both Fiso and 1 RM indicating high concurrent validity (p < 0.01). However, the generalizability of F‐V relationship parameters depicting maximum force (F0), velocity (V0) and power (P0) of the tested muscle groups was inconsistent and on average low (i.e. F0; r = ‐0.24) to moderate (i.e. V0 and P0; r = 0.54 and r = 0.64, respectively; both p < 0.05). We concluded that the F‐V relationship could be used for the assessment of arm and leg muscle mechanical properties when standard tests are applied, since the typical outcome is an exceptionally strong and linear F‐V relationship, as well as high concurrent validity of its parameters. However, muscle mechanical properties could be only partially generalized across different tests and muscles.

Open access