Search Results

1 - 2 of 2 items

  • Author: Simon Rabarijoely x
Clear All Modify Search
A New Method for the Estimation of Hydraulic Permeability, Coefficient of Consolidation, and Soil Fraction Based on the Dilatometer Tests (DMT)

Abstract

The main issue of the paper is the estimation of soil hydraulic permeability based on the DMT test. DMTA, DMTC and SASK methods performed in the Nielisz dam, Stegny and the SGGW Campus of the Warsaw University of Life Sciences sites are described. The article presents the implementation of the dilatometer Marchetti test (DMT) in the determination of soil fraction and effects of its occurrence in the subsoil, tested in the Nielisz dam located in the Wieprz river valley in the Lublin province, and in various sites in Warsaw (Stegny site and SGGW Campus of the Warsaw University of Life Sciences). In order to acquire the needed data, the flat dilatometer test (DMT) method was used. A direct and indirect pressure methodology of interpreting soil swelling was characterized in the article. The paper shows the possibilities of determining sand, silt and clay soil fractions based on po and p 1 pressures from dilatometer tests (DMT) and the effective (σvo) and total (σvo) vertical in situ overburden stress. Additionally, the main advantage of this paper is the proposal of use of a new chart to determine hydraulic permeability and soil fraction, based on DMT tests.

Open access
Sask method for testing hydraulic conductivity of soils by flat dilatometer (dmt)

Abstract

DMT is one of the most popular methods of determining soil parameters needed to design a safe construction. Apart from the basic outcome parameter obtained from DMT measurements hydraulic conductivity (k) can be determined, previously proposed DMTA and DMTC methods were modified. The basic idea of the method is that the return of the deformed membrane is due to soil and water pressure. In the proposed SASK method the hydraulic conductivity of the soil is determined by measuring time-varying pressures A and C. Research has been performed at the experimental site of the Department of Geotechnical Engineering, WULS. In the paper, the assumptions of the new method for determining the hydraulic conductivity k are presented. The proposed method allows us to determine a reliable value for the hydraulic conductivity of clay soils. Using this method, the value of hydraulic conductivity (k = 5,47*10-11) is similar to the results of BAT, DMTA and laboratory measurements.

Open access