Search Results

1 - 10 of 13 items

  • Author: Siemowit Muszyński x
Clear All Modify Search

Abstract

The aim of the study was to determine the effect of reduced pressure on the osmotic dehydration of apples. Tests were performed under vacuum of 8 kPa, 67 kPa, 80 kPa and under the atmospheric pressure (100 kPa). The samples were dehydrated in a sucrose solution with a concentration of 30°Bx, 50°Bx and 70°Bx. It has been shown that the effect of low pressure application depends significantly to the concentration of the osmotic solution. It has been found that the overall weight change significantly depend on the concentration of the solution, and after 3 hours of dehydration at a pressure of 80 kPa at solutions of 30°Bx, 50°Bx and 70°Bx total weight loss increased by 65%, 12% and 25% respectively, when compared to samples dehydrated at atmospheric pressure. From the studied variants of reduced pressure, the pressure of 80 kPa seems to be the optimal one, as evidenced by the lowest values of weight gain to water loss ratios for apples dehydrated in solutions of 50°Bx and 70°Bx.

Abstract

Acrylamide (AA) is a chemical substance with a potentially carcinogenic effect. Its presence in food or animal food arises from its thermal processing. The experiment was conducted to evaluate the effect of AA exposure (3.0 mg/kg. b.w./day) of pregnant dams during the second half of the pregnancy on bone development in offspring. As an model animal, guinea pig was used. While term body weight of newborns was not influenced by maternal AA treatment, shorter bones with reduced bone diaphysis cross-sectional area were observed in experimental group. Numerous negative, offspring sex-dependent effects of maternal AA exposure were observed in femoral epiphysis and metaphysis as well as the articular and growth plate cartilages. These effects resulted from the AA-induced alterations in bone metabolism, as indicated by the changes in the expression of numerous proteins involved in bone development: receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and cartilage oligomeric matrix protein (COMP), all of whose expression was measured as well as distribution of immature collagen fibres was determined. Based on the results, it can be concluded that the exposure of pregnant dams to AA negatively affected the structure of compact bone in bone diaphysis, microarchitecture of trabecular bone in metaphysis and epiphysis as well as the structure of the articular and growth plate cartilages in their offspring. The AA-induced bone impairment increased osteoclast differentiation, as observed through the change in the RANKL/OPG ratio, which in turn inhibited osteoblast function by decreasing the expression of other proteins. The data of the present study suggests that maternal AA exposure can result in insufficient bone gain and even bone loss after the birth.

Abstract

Introduction: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON) since one day after mating, throughout gestation (ca. 46 d) and lactation to pelt harvesting. Material and Methods: Thirty clinically healthy multiparous minks (Neovison vison) of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: nontreated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. Results: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. Conclusion: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

Abstract

Introduction: The aim of this study was to determine the effect of deoxynivalenol (DON), given alone or with bentonite (which eliminates mycotoxicity) in the diet of mink dams throughout mating, pregnancy, and lactation period to pelt harvesting, on the mechanical properties and geometry of their long bones.

Material and Methods: The minks were randomly assigned into two groups: a control group (not supplemented with DON, n = 15) and a group fed naturally DON-contaminated wheat and divided into three sub-groups (each sub-group n = 15), depending on bentonite dose: 0 M – sub-group fed naturally DON-contaminated wheat at a concentration of 3.7 mg kg−1 alone; 2 M – sub-group fed naturally DON-contaminated wheat at a concentration of 3.7 mg kg−1 and bentonite at a concentration of 2 kg 1000 kg−1; 0.5 M – sub-group fed naturally DON-contaminated wheat at a concentration of 3.7 mg kg−1 and bentonite at a concentration of 0.5 kg 1000 kg−1.

Results: The DON treatment reduced the length of the femur compared to the control group and reduced the bone weight dependently on the amount of bentonite supplementation. However, DON treatment reduced the MRWT and CI of the femur, irrespective of the bentonite supplementation, compared to the control. The total BTD and BMC decreased in all DON-treated groups (irrespective of the bentonite supplementation). Furthermore, the densitometric analysis showed that the main changes in BMD and BMC indicated bone loss in the proximal and distal parts of bone covering the trabecular bone; whereas when bentonite was given at the dose of 2 kg 1000 kg−1 an increase in the whole BMD and BMC was observed in the femoral midshaft.

Conclusion: Analysis of the geometrical parameters seems to indicate that endosteal resorption was delayed after bentonite supplementation. The addition of bentonite diminished the DON action on bone homeostasis in the mink dams. Thus bentonite could prevent DON-induced bone loss in a dose-dependent manner.

Abstract

In the present study, the physicochemical, textural and sensorial properties of crackerbread (made from rye, maize and wheat flour) and rice waffles, the most popular on the Polish market bread substitutes, were determined. It was shown that values of several mechanical properties of rice waffles, including ultimate fracture force, strain and stress differed significantly from that of crackerbread. Texture profile analysis showed that the highest hardness and springiness was exhibited by rice waffles with sesame seeds and wheat-rye, respectively. The concentration of salt was the lowest in rice bread with sunflower. The most acceptable was the rice bread with sea salt (8.26 in a 9-point scale) and overall consumer acceptance of crispbreads was highly correlated with sensory attribute of saltiness.

Abstract

Administration of the amino acid copper (Cu) complex ensures higher Cu bioavailability through enhanced absorption from intestine and decreases the dietary Cu level, compared to the recommended Cu dose. The objective of this study was to investigate the effect of Cu-low diet on the bone development in adolescent rats. Male rats at the age of 6 weeks were used in the 12-week experiment. The control diet provided the required Cu level from sulfate (S-Cu) and other diets were supplemented with Cu as a glycine complex (Cu-Gly) at 25%, 50%, 75%, and 100% of daily requirement. After the 12-week treatment, rats from the Cu-Gly100 group were heavier, compared to the other groups. The copper and calcium plasma and bone concentrations of the rats in the groups treated with the organic form of Cu (irrespective of its dose) was similar to the control values noted in the rats administered with S-Cu. A decrease in the femur weight and length was observed in the Cu-Gly75 and Cu-Gly50 groups. Cu-Gly increased the cross section area, mean relative wall thickness, and cortical index only in the Cu-Gly75 group. A decrease in the ultimate strength, elastic stress, and ultimate stress was noted in the Cu-Gly100 and Cu-Gly75 groups. In the Cu-Gly50 group, a decrease in the ultimate stress and an increase in the maximal elastic strength and bending moment were noted. Adolescent rats treated with Cu-Gly at a Cu-deficient level exhibited a dose-dependent strongly osteoporotic cancellous bone. Lower proteoglycan content was found in groups fed the Cu-low diet. In the control rats supplemented with S-Cu, there was no evident gradient in safranin O staining. It is difficult to indicate which dose of the Cu-Gly complex among the investigated Cu-poor diet exerted a positive effect on bone metabolism. It appears that the use of this Cu-Gly complex at a significantly reduced dose than S-Cu at the recommended dose did not inhibit the development of bone and hyaline cartilage in adolescent rats.

Abstract

Β-hydroxy-β-methylbutyrate (HMB) is one of the leucine metabolites with protein anabolic effects which makes it very popular among athletes. Previously, it was shown that HMB administered during the prenatal period reduced the pool of primordial follicles and increased the proportion of developing follicles in newborn piglets. This work is a further step to understand these morphological alterations. Therefore, the aim of this study was to examine the effect of prenatal HMB treatment on the expression of the Kit ligand, BMP-4, bFGF, and the IGF-1/IGF-1R system which are the main growth factors controlling follicular development. Excised ovaries from 12 newborn piglets, originated from the control (n=6) and HMB-treated (n=6) sows were used for immunohistochemical and western-blot analysis. The tested proteins were localized within egg nests and ovarian follicles. Furthermore, the western-blot assay indicated higher BMP-4, Kit ligand, and IGF-1R expression, while the level of bFGF and IGF-1 proteins decreased after HMB dietary treatment. These findings show that HMB included into sow diet can modulate the expression of growth factors and thereby alter ovarian morphology in offspring. Therefore, this study opens a discussion about the benefits and risks of the diet supplemented with HMB and its potential application in medicine and animal husbandry, and further research is necessary in this area.

Abstract

An effect of the exposure to chloramphenicol (CAP) at doses used therapeutically was studied in pigs at the age of slaughter. Pigs were treated with CAP intramuscularly (20 mg/kg b.w. two times every 24 hours). Histomorphometrical and immunohistochemical analyses of small intestine and liver were done. CAP increased the thickness of myenteron and submucosa, and the length of villi; decreased the depth of crypts in the duodenum and jejunum. CAP influenced the Auerbach plexus. A decrease in cell proliferation, an increase in the number of apoptotic cells and T lymphocytes in the CAP-treated pigs were observed. CAP induces hepatotoxicity, neurotoxicity and disturbed intestinal epithelium. It can be concluded that short exposure of pigs to CAP at doses used therapeutically results in disturbed digestion and absorption process in the intestine.

Abstract

Faba bean (FB) seeds can be a good protein-energy component in animal feed. However, the presence of anti-nutritional substances is a negative feature of FB seeds. The aim of this study was to examine the influence of different levels of unprocessed FB seeds in feed on the gut-bone axis and metabolic profile in broilers. Ninety six, 1-day-old Ross 308 broiler chickens were randomly selected to one of the 3 dietary treatments (32 chickens in each, divided into 8 pens with 4 birds per each pen): the control group fed standard diet with soybean meal and without FB seeds, group I fed 8/15% (starter/grower) of high-tannin FB seeds, and group II fed 16/22% of high-tannin FB seeds. Bone mechanical examination, hematological and serum biochemical analysis as well histomorphometry of small intestine and liver tissue were performed. The intake of high-tannin FB seeds, irrespective of their amount, did not alter the bone geometric, mechanical and densitometric parameters nor influenced basal hematological parameters, however it resulted in: decreased serum concentration of total cholesterol and calcium; a reduced longitudinal myenteron of small intestine; increased mucosa and villus epithelium thickness, villus length, thickness and absorptive surface in duodenum; increased number of active crypts in jejunum; unchanged collagen area, intercellular space, and total cell number in the liver; decreased number of multinuclear hepatocyte cells. Moreover, the livers of birds fed the higher dose of high-tannin FB seeds had lymphocytic infiltrates in portal tracts and sinusoids. Feeding of unprocessed high-tannin FB seeds exerted an influence on the gastrointestinal tract by increased absorptive surface. In conclusion, the dietary inclusion of unprocessed high-tannin FB seeds had no negative effects on broiler growth, tibial bone mechanical properties and intestinal characteristics. Unprocessed high-tannin FB seeds may be used in broiler diets, but their dietary levels should not be higher than those discussed.

Abstract

Lead (Pb) and cadmium (Cd) are toxic metals occurring commonly in the human environment that show mutagenic, genotoxic and carcinogenic effects. Dietary components could prevent heavy metals intoxication by reducing their accumulation in the body. The purpose of the study was to check possible protective effect of regular consumption of white, black, red, or green tea on bone metabolism during long-term exposure to Pb and Cd in adult rats. The 12 week-long exposure to Pb and Cd (50 mg Pb and 7 mg Cd/kg of the diet) in a rat model was studied. Twelve-week-old adult male Wistar rats were randomly divided into a negative control group (Pb and Cd exposure without tea), a control (without Pb and Cd and teas), and groups co-exposed to Pb and Cd and supplemented with green, red, black, or white tea (n=12 each group). The experiment lasted for 12 weeks. The co-exposure to Pb and Cd led to the increase of bone resorption depending on the tea treatment, which was confirmed by the mechanical testing and histomorphometrical examination of cancellous bone. Pb and Cd influenced mechanical strength, reduced the densitometric and geometric parameters and the thickness of growth plate and articular cartilages. Concluding, white tea exerted the best protective effect on bone tissue and hyaline cartilage against heavy metal action.