Search Results

1 - 10 of 33 items

  • Author: Shi Wang x
Clear All Modify Search
Reliability Estimation Based on the Degradation Amount Distribution Using Composite Time Series Analysis and Grey Theory

Abstract

This paper puts forward a reliability estimation method by the Degradation Amount Distribution (DAD) of products, using a composite time series modeling procedure and grey theory based on a random failure threshold. Product DAD data are treated as a composite time series and described using a composite time series model to predict a long-term trend of degradation. The degradation test is processed for a certain electronic product and the degradation data is collected for reliability estimation. Comparison among the reliability evaluation by DAD composite time series analysis and grey theory, based on a constant and a random failure threshold, reliability evaluation by DAD regression analysis based on a random failure threshold, reliability evaluation by degradation path time series analysis, and real reliability of the electronic product is done. The results show that the reliability evaluation of the product using the method proposed is the most creditable of all.

Open access
Effect of Glutathione Depletion on Nrf2/ARE Activation by Deltamethrin in PC12 Cells

Transcription factor NF-E2-related factor 2 (Nrf2) is important for cell protection against chemical-induced oxidative stress. Previously, we have reported that in PC12 cells, Nrf2 can be triggered by deltamethrin (DM), a commonly used pyrethroid insecticide. Molecular mechanisms behind Nrf2 activation by DM are still unclear. Here we studied the effects of cell glutathione (GSH) depletion on Nrf2 activation by DM. We found that DM enhanced Nrf2 expression at the mRNA and protein levels and increased nuclear Nrf2 levels. Activation of Nrf2 was associated with activation of its downstream targets, such as heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC). In contrast, DL-buthionine-[S,R]- sulfoximine (BSO), a known GSH-depleting agent, did not increase Nrf2 protein expression or cause its nuclear accumulation. However, pre-treatment with BSO triggered mRNA expression of HO-1 and GCLC. Furthermore, BSO pre-treatment suppressed DM-induced Nrf2 upregulation and activation and lowered mRNA expression of HO-1 and GCLC upon DM treatment. These data demonstrate that GSH depletion is not necessary for the activation of Nrf2/ARE by DM in PC12 cells, and that GCLC and HO-1 expression can increase through other signalling pathways.

Open access
Numerical Study on Thermal Environment in Mine Gob Under Coal Oxidation Condition

Abstract

The most feared of hazards in underground mines are those of fires and explosions. This study focuses on the temperature-rising process of residual coal under spontaneous combustion condition in coal mine gob. A numerical model has been established considering the chemical reaction, heat transfer and components seepage flow. The temperature distributions and maximum values for different positrons at various times have been calculated by using the coupled model. An experimental model has been also developed for model calibration. The validation indicates the numerical model is accurate and suitable for solving the temperature-rising problem in coalmines. The simulation results show that high temperature zone appears at the air intake roadway side in the gob and enlarging the ventilation flux increases the risk of self-ignition of coal. The research results can be used to predict the temperature-rising of coal spontaneous combustion and coal resources prevention.

Open access
TERAHERTZ MEASUREMENT OF INDICATOR GAS EMISSION FROM COAL SPONTANEOUS COMBUSTION AT LOW TEMPERATURE

Abstract

Coal spontaneous combustion is an extremely complicated physical and chemical changing process. In order to improve the indicator gases detection technology and coal spontaneous combustion monitoring, a novel forecast method for toxic gases emission from coal oxidation at low temperature is presented in this paper. The experiment system is setup combined with frequency-domain terahertz technology and coal temperature programming device. The concentration curves of carbon monoxide and sulphur dioxide gases from coal spontaneous combustion are estimated according to molecule terahertz spectra. The influences of coal rank and oxygen supply on coal spontaneous combustion characteristics are discussed. Both carbon monoxide and sulphur dioxide gases absorption spectra show the characteristic equi-spaced absorption peaks. Results demonstrate that under the condition of lean oxygen, there exists a critical oxygen concentration in the process of coal oxidation at low temperature. Comparing with Fourier infrared spectrum testing, the presented method is highly accurate and more sensitive, especially suitable for early-stage monitoring of the indicator gases produced by coal spontaneous combustion.

Open access
Stability of generalized Newton difference equations

Abstract

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations Δn (p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional equations and general Newton functional equations for logarithmic spirals.

Open access
Detection of Placido rings fracture based on ECC image registration
Open access
Protective effects of dietary fibre against manganese-induced neurobehavioral aberrations in rats

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.

Open access
Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy

Abstract

Background: Recently bismuth-based nanoparticles have attracted increasing attention as a dose amplification agent in radiation therapy due to high atomic number, high photoelectric absorption, low cost, and low toxicity.

Objectives: This study aims to calculate physical aspects of dose enhancement of bismuth-based nanoparticles in the presence of brachytherapy source by Monte Carlo simulation and an analytical method for low mono-energy. Materials and methods: After simulation and validation brachytherapy sources (Iodine-125 and Ytterbium-169) by Monte Carlo code, bismuth-based nanoparticles (bismuth, bismuth oxide, bismuth sulfide, and bismuth ferrite) were modeled in the sizes of 50 nm and 100 nm for two concentrations of 10 and 20 mg/ml. Dose enhancement factors for the bismuth-based nanoparticles were measured at both brachytherapy sources. Furthermore, the dose amplification was calculated with an analytic method at 30 keV mono-energy.

Results: Dose enhancement factor was greatest with pure bismuth nanoparticles, followed by bismuth oxide, bismuth sulfide and bismuth ferrite for both radiation source and simulation methods. The dose amplification for the bismuth-based nanoparticles increased with increasing size and concentration of nanoparticles.

Conclusion: The physical aspect dose enhancement of the nanoparticles was shown by Monte Carlo and analytic method. The results have proved bismuth-based nanoparticles deserve further study as a radiosensitizer.

Open access