Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Shaocheng Tong x
Clear All Modify Search
Open access

Shaocheng Tong, Changliang Liu and Yongming Li

Robust adaptive fuzzy filters output feedback control of strict-feedback nonlinear systems

In this paper, an adaptive fuzzy robust output feedback control approach is proposed for a class of single input single output (SISO) strict-feedback nonlinear systems without measurements of states. The nonlinear systems addressed in this paper are assumed to possess unstructured uncertainties, unmodeled dynamics and dynamic disturbances, where the unstructured uncertainties are not linearly parameterized, and no prior knowledge of their bounds is available. In recursive design, fuzzy logic systems are used to approximate unstructured uncertainties, and K-filters are designed to estimate unmeasured states. By combining backstepping design and a small-gain theorem, a stable adaptive fuzzy output feedback control scheme is developed. It is proven that the proposed adaptive fuzzy control approach can guarantee the all the signals in the closed-loop system are uniformly ultimately bounded, and the output of the controlled system converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by a simulation example and some comparisons.

Open access

Shaocheng Tong, Gengjiao Yang and Wei Zhang

Observer-based fault-tolerant control against sensor failures for fuzzy systems with time delays

This paper addresses the problems of robust fault estimation and fault-tolerant control for Takagi-Sugeno (T-S) fuzzy systems with time delays and unknown sensor faults. A fuzzy augmented state and fault observer is designed to achieve the system state and sensor fault estimates simultaneously. Furthermore, based on the information of on-line fault estimates, an observer-based dynamic output feedback fault-tolerant controller is developed to compensate for the effect of faults by stabilizing the resulting closed-loop system. Sufficient conditions for the existence of both a state observer and a fault-tolerant controller are given in terms of linear matrix inequalities. A simulation example is given to illustrate the effectiveness of the proposed approach.