Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Shada Y. Elhayek x
Clear All Modify Search
Open access

Eman Y. Abu-Rish, Shada Y. Elhayek, Yehia S. Mohamed, Islam Hamad and Yasser Bustanji

Abstract

Modulation of the immune system has recently been shown to be involved in the pharmacological effects of old antiepileptic drugs and in the pathogenesis of epilepsy. Therefore, the most recent guidelines for immunotoxicological evaluation of drugs were consulted to investigate the immunomodulatory effects of lamotrigine, a newer antiepileptic drug, in BALB/c mice. These included the in vivo effects of lamotrigine on delayed-type hypersensitivity (DTH) response to sheep red blood cell (SRBC) antigens, hemagglutination titer assays and hematological changes. In vitro effects of lamotrigine on ConA-induced splenocyte proliferation and cytokine secretion were assessed. The results showed that lamotrigine treatment significantly increased the DTH response to SRBC in the mouse model of this study. This was accompanied by a significant increase in relative monocyte and neutrophil counts and in spleen cellularity. Lamotrigine significantly inhibited ConA-induced splenocyte proliferation in vitro and it significantly inhibited IL-2 and TNF-α secretion in ConA-stimulated splenocytes. In conclusion, the results demonstrated significant immunomodulatory effects of lamotrigine in BALB/c mice. These data could expand the understanding of lamotrigine-induced adverse reactions and its role in modulating the immune system in epilepsy.

Open access

Shada Y. Elhayek, Mohammad A. Fararjeh, Areej M. Assaf, Eman Y. Abu-Rish and Yasser Bustanji

Abstract

Tigecycline is a glycylcycline antibiotic approved by the FDA for the treatment of complicated infections. Despite its effectiveness, the FDA announced a warning of increasing mortality associated with its use. There is, however, no clear explanation for this side effect. Previous reports found a possible effect of tigecycline on leukocyte proliferation and proinflammatory cytokine release. We t herefore i nvestigated the effect of tigecycline on the immune components and response in Balb/c mice in vivo and in vitro. It was found that tigecycline enhanced lymphocyte proliferation and significantly increased cellular infiltration within the footpad, as based on DTH testing, but reduced the hemagglutination titer. In splenocyte cultures, tigecycline suppressed splenocyte proliferation with IC50 3-5 mmol L-1, significantly increased IL-2 secretion and reduced IL-17 secretion in a dose dependent mode. In conclusion, tigecycline is safe at therapeutic and sub-therapeutic doses, but it could still have an immunomodulatory effect at higher doses. Use of higher doses of tigecycline requires further investigation.