Search Results

1 - 2 of 2 items

  • Author: Salih Lachache x
Clear All Modify Search
Hydrochemistry and origin of principal major elements in the groundwater of the Béchar–Kénadsa basin in arid zone, South-West of Algeria

Abstract

Béchar region is located in the southwest of Algeria, characterized by an arid climate with a Saharan tendency. It is subject to an increasing demand for water like all the great agglomerations due to the economic and demographic development. The groundwater of region is deteriorating because of the economic development, and the rapid growth of population. This article is devoted to the study of hydrochemistry and processes of mineralization of groundwater in this region. The results of physicochemicals analyses shows the same chemical facies of the chloride and sulphate-calcium and magnesium type, with high mineralization from North-East to South-West to the outlet of Béchar–Kénadsa basin. The determination of the mineralization origin and the main major elements were approached by multivariate statistical treatment and geochemical. This method has identified the main chemical phenomena involved in the acquisition of mineralization of water in this aquifer. These phenomena are mainly related to the dissolution of evaporite formations, the infiltration of runoff water and direct ion exchange and mixing. However, the high mineralization anomaly is observed at the centre of Béchar–Kénadsa basin progressively by going to the outlet of this basin.

Open access
Hydrochemical assessment and groundwater pollution parameters in arid zone: Case of the Turonian aquifer in Béchar region, southwestern Algeria

Abstract

Groundwater samples from Turonian aquifer of Béchar region were evaluated as drinking and irrigation water sources. physicochemical parameters including pH, EC, TH, Na+, Ca2+, Mg2+, Cl, SO4 2– and NO3 were determined for 16 water sampling points. These characterizations show that the groundwater is fresh to brackish, slightly alkaline and the major ions are Na+, Ca2+, Mg2+, Cl and SO4 2–. According to WHO standards, 50% of the analysed water are suitable as a drinking source while the other samples are not in compliance with drinking water standards. This non-compliance is basically due to the high concentrations of Na+, Cl, and SO4 2– requesting further treatment to reach the stringent standards. According to the results of nitrate concentrations, anthropogenic source seems to influence the groundwater quality. The present study shows that Béchar groundwater may represent an important drinking and irrigation water source. However, a specific management strategy should be adapted in order to avoid the contamination by anthropogenic sources.

Open access