Search Results

1 - 2 of 2 items

  • Author: Salar Zohoori x
Clear All Modify Search

Abstract

Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.

Abstract

Fabrication of electro-conductive fiber is a novel process. Nanocomposites of multiwall carbon nanotube/polyamide66 were produced by electrospinning with different amounts of multiwall carbon nanotube. Field emission scanning electron microscope and Fourier transform infrared spectroscopy of samples proved the existence of multiwall carbon nanotube distribution in polyamide 66 nanofibers. Results showed that electro conductivity of electrospun multiwall carbon nanotube/polyamide 66 nano fiber has increased in comparison with electrospun polyamide 66. Moreover, UV blocking of samples was investigated which has shown that using multiwall carbon nanotube in polyamide 66 increases UV blocking of fibers. Furthermore, anti-bacterial activity of nanocomposite showed that these nanocomposites have antibacterial property against both Staphylococcus Aureus and Escherichia Coli bacteria according to AATCC test method.