Search Results

You are looking at 1 - 3 of 3 items for

  • Author: S.G. Acharya x
Clear All Modify Search
Open access

S.G. Acharya and J.A. Vadher

Abstract

Casting is the most widely used manufacturing technique. Furan No-bake mould system is very widely accepted in competitive foundry industries due to its excellent characteristics of producing heavy and extremely difficult castings. These castings have excellent surface finish and high dimensional stability. Self setting and high dimensional stability are the key characteristics of FNB mould system which leads to reduce production cycle time for foundry industries which will ultimately save machining cost, labour cost and energy. Compressive strength is the main aspect of furan no bake mould, which can be improved by analyzing the effect of various parameters on it. ANN is a useful technique for determining the relation of various parameters like Grain Fineness Number, Loss on Ignition, pH, % resin and temperature of sand with compressive strength of the FNB mould. Matlab version: R2015a version 8.3 software with ANN tool box can be used to gain output of relation. This paper deals with the representation of relationship of various parameters affecting on the compressive strength of FNB mould.

Open access

S. G. Acharya, J. A. Vadher and K. D. Kothari

Abstract

Casting covers major area of production all over the world. Resin bonded casting is widely used in today’s manufacturing industries. Furan No bake casting is most widely accepted in indian foundries due to its excellent surface finish and dimensional stability. It is a self-setting binder and it has a lower work and strip times. Though the casting process is also known as process of uncertainty, in the present study, an attempt has been made to investigate the effect of Grain Fineness Number, Loss of Ignition, Potential of Hydrogen, % of Resin with respect to sand, Sand Temperature and Compressive strength of the mould on Sand Inclusion defect - one of the most dominating defect in the Krislur Castomech Pvt. Ltd. Industry situated at Bhavnagar, Gujarat, India. The experiments were conducted based on response surface methodology (RSM) and sequential approach using face centered central composite design. The results show that quadratic model with removal of some insignificant term is comparatively best fits for Sand Inclusion Defect.

Open access

S.G. Acharya, J.A. Vadher and P.V. Kanjariya

Abstract

Sand samples with furan binder were prepared using Sand, Furfuryl Alcohol and Toluene Sulfonic Acid with ratio 100:0.85:0.30. To identify and quantify gases releasing from furan binder various studies like FTIR, TGA and GC-MS were carried out. After analyzing our materials using above mentioned characterizations the chemical formula of the Resin and Binder and amount of gases releasing from composition were confirmed. After studying various reports on pyrolysis process of furan binder calculation of the % of various gases emitting during pyrolysis process of furan was carried out. Sample of gas collected from mold was analyzed using GC-MS. Based on GCMS measurement various gases emitting from furan sand mold were identified and their amount were calculate and compared with the international standers of permissible gas emission limits in a foundry. The purpose of this paper is to assist foundries in pollution prevention by devising clean technologies which maintain or improve the quality of ambient surrounding. This paper aimed at minimization of pollution of air by using various techniques.