Search Results

You are looking at 1 - 6 of 6 items for

  • Author: S.-T. Oh x
Clear All Modify Search
Open access

S.-R. Bang, D.-M. Yim, D.-H. Riu and S.-T. Oh

Abstract

SiC/Cu composite powders with the barrier coating of SiC-Al onto SiC powders were synthesized from Al-containing polycarbosilane precursor and Cu-nitrate hydrate. Curing at 200°C and high temperature pyrolysis at 1600°C was used to achieve the crystallization of precursor, forming the SiC-Al coating on the surface of SiC powders. A core-shell structure with the core of SiC and the shell of Cu was constructed by calcination and hydrogen-reduction of Cu nitrate hydrate. XRD and SEM analysis revealed that the β-SiC and 4H-SiC phases were formed on the surface of the initial α-SiC powders. Also, it was observed by EDX mapping that core powders of SiC were homogeneously surrounded with the fine Cu particles on their surface.

Open access

Y.-K. Jeong, Y.S. Kim and S.-T. Oh

Abstract

An optimum route to fabricate the Cu-based SiC composites with homogeneous microstructure was investigated. Three methods for developing the densified composites with sound interface between Cu and SiC were compared on the basis of the resulting microstructures. Starting with three powder mixtures of elemental Cu and SiC, elemental Cu and PCS coated SiC or PCS and Cunitrate coated SiC was used to obtain Cu-based SiC composites. SEM analysis revealed that the composite fabricated by spark plasma sintering using elemental SiC and Cu powder mixture showed inhomogeneous microstructure. Conversely, dense microstructure with sound interface was observed in the sintered composites using powder mixture of pre-coated PCS and Cu-nitrate onto SiC. The relationship between powder processing and microstructure was discussed based on the role of coating layer for the wettability

Open access

G.-S. Moon, T.-J. Chung, S.-H. Yang, G.-S. Hong and K.-S. Oh

Abstract

The green body and dense substrate of indium tin oxide was joined by uniaxially pressing at 0.3 MPa at 1300°C to test the restoring of the eroded part of transparent conducting oxide target. The green body was sintered to 98% of theoretical density under the suppression of shrinkage along the boundary below 5%. The boundary between two parts was free of pore but could be recognized from the difference in grain sizes. The joined part had the virtually same density with the substrate, but the grain size was less than one fifth compared with that of substrate.

Open access

H.-E. Lee, Y.Su. Kim, J.K. Park and S.-T. Oh

Abstract

Microstructure evolution of Ni-based oxide dispersion-strengthened alloy powders with milling time is investigated. The elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % were ball-milled by using horizontal rotary ball milling with the change of milling velocity. Microstructure observation revealed that large aggregates were formed in the early stages of ball milling, and further milling to 5 h decreased particle size. The average crystalline size, estimated by the peak broadening of XRD, decreased from 28 nm to 15 nm with increasing milling time from 1 h to 5 h. SEM and EPMA analysis showed that the main elements of Ni and Cr were homogeneously distributed inside the powders after ball milling of 5 h.

Open access

K.Ch. Jeon, Y.D. Kim, M.-J. Suk and S.-T. Oh

Abstract

Porous Ti with controlled pore structure was fabricated by thermal decomposition and sintering process using TiH2 powders and Polymethylmethacrylates (PMMA) beads as pore forming agent. The beads sizes of 8 and 50 μm were used as a template for fabricating the porous Ti. The TiH2 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1100°C. TGA analysis revealed that the PMMA and TiH2 were thermally decomposed at about 400°C forming pores and at about 600°C into metallic Ti phase. The porosity increased with increase in the amount of PMMA addition. Also, the microstructure observation showed that the pore size and shape were strongly dependent on the PMMA shapes.

Open access

K.-W. Kim, K.-S. Oh, H. Lee, B.-S. Kim and T.-J. Chung

Abstract

Two-step sintering route was applied for the densification SiC by promoting the role of liquid phase. The specimen contained 8 vol% of liquid phase composed of Al2O3 and Y2O3. The heating schedule consisted with initial rapid heating to 2000°C and immediate quenching to 1700 or 1750°C. By heating at elevated temperature, even distribution of the liquid phase was intended. The heat treatment at reduced temperature was to suppress the evaporative loss of the liquid and to secure the time for densification. The two-step sintering effectively suppressed loss of mass and coarsening. The resultant SiC was thus dense and was composed of fine grains exhibiting hardness of 2321 kgf/mm2.