Search Results

You are looking at 1 - 9 of 9 items for

  • Author: S.-J. Hong x
Clear All Modify Search
Open access

H.-S Kim, M. Babu and S.-J. Hong

Abstract

TAGS-90 compound powder was directly prepared from the elements by high-energy ball milling (HEBM) and subsequently consolidated by a spark plasma sintering (SPS). Effect of milling time on the microstructure and thermoelectric properties of the samples were investigated. The particle size of fabricated powders were decreased with increasing milling time, finally fine particles with ~1μm size was obtained at 90 min. The SPS samples exhibited higher relative densities (>99%) with fine grain size. X-ray diffraction analysis (XRD) and energy dispersion analysis (EDS) results revealed that all the samples were single phase of GeTe with exact composition. The electrical conductivity of samples were decreased with milling time, whereas Seebeck coefficient increased over the temperature range of RT~450°C. The highest power factor was 1.12×10−3W/mK2 obtained for the sample with 90 min milling at 450°C.

Open access

S.-M. Yoon, B. Madavali, Y.-N. Yoon and S.-J. Hong

Abstract

In this work, p-type Bi0.5Sb1.5Te3 alloys were fabricated by high-energy ball milling (MA) and spark plasma sintering. Different revolutions per minute (RPM)s were used in the MA process, and their effect on microstructure, and thermoelectric properties of p-type Bi0.5Sb1.5Te3 were systematically investigated. The crystal structure of milled powders and sintered samples were characterized using X-ray diffraction. All the powders exhibited the same morphology albeit with slight differences find at 1100 RPM conditions. A slight grain size refinement was observed on the fracture surfaces from 500 to 1100 RPM specimens. The temperature dependence of Seebeck coefficient, electrical conductivity, and power factors were measured as a function of temperature with different RPM conditions. The power factor shows almost same (~3.5 W/mK2 at RT) for all samples due to unchanged Seebeck and electrical conductivity values. The peak ZT of 1.07 at 375K is obtained for 1100 RPM specimen due to low thermal conductivity.

Open access

P. Dharmaiah, H.-S. Kim, K.-H. Lee and S.-J. Hong

Abstract

In this study, single phase polycrystalline Zn4Sb3 as well as 11 at.% Zn-rich Zn4Sb3 alloy having ε-Zn4Sb3 (majority phase) and Zn (minority phase) phases bulk samples produced by gas-atomization and subsequently consolidated by spark plasma sintering (SPS) process. The crystal structures were analyzed by X-ray diffraction (XRD) and cross-sectional microstructure were observed by the scanning electron microscopy (SEM). The internal grain microstructure of 11at.% Zn-rich Zn4Sb3 powders shows lamellar structure. Relative density, Vickers hardness and crack lengths were measured to investigate the effect of sintering temperature of Zn4Sb3 samples which are sintered at 653, 673 and 693 K. Relative density of the single phase bulk Zn4Sb3 sample reached to 99.2% of its theoretical density. The micro Vickers hardness of three different sintering temperatures were found around 2.17 – 2.236 GPa.

Open access

E.-B. Kim, J.-M. Koo and S.-J. Hong

Abstract

In this study, p-type Bi0.5Sb1.5Te3 based nanocomposites with addition of different weight percentages of Ga2O3 nanoparticles are fabricated by mechanical milling and spark plasma sintering. The fracture surfaces of all Bi0.5Sb1.5Te3 nanocomposites exhibited similar grain distribution on the entire fracture surface. The Vickers hardness is improved for the Bi0.5Sb1.5Te3 nanocomposites with 6 wt% added Ga2O3 due to exhibiting fine microstructure, and dispersion strengthening mechanism. The Seebeck coefficient of Bi0.5Sb1.5Te3 nanocomposites are significantly improved owing to the decrease in carrier concentration. The electrical conductivity is decreased rapidly upon the addition of Ga2O3 nanoparticle due to increasing carrier scattering at newly formed interfaces. The peak power factor of 3.24 W/mK2 is achieved for the base Bi0.5Sb1.5Te3 sintered bulk. The Bi0.5Sb1.5Te3 nanocomposites show low power factor than base sample due to low electrical conductivity.

Open access

G.-S. Moon, T.-J. Chung, S.-H. Yang, G.-S. Hong and K.-S. Oh

Abstract

The green body and dense substrate of indium tin oxide was joined by uniaxially pressing at 0.3 MPa at 1300°C to test the restoring of the eroded part of transparent conducting oxide target. The green body was sintered to 98% of theoretical density under the suppression of shrinkage along the boundary below 5%. The boundary between two parts was free of pore but could be recognized from the difference in grain sizes. The joined part had the virtually same density with the substrate, but the grain size was less than one fifth compared with that of substrate.

Open access

H.-S. Kim, B. Madavali, T.-J. Eom, C.-M. Kim, J.-M. Koo, T.-H. Lee and S.-J. Hong

Abstract

In this research, effect of the various mechanical milling process on morphology and microstructural changes of nano and micron Al-powders was studied. The milling of Al-powders was performed by both high energy and low energy ball milling process. The influence of milling (pulverizing) energy on the structural changes of Al-powders was studied. Al-nanoparticles were agglomerated during the MA and its size was increased with increasing milling while micron Al-powder gets flattened shape during high energy ball milling due to severe plastic deformation. Meanwhile, structural evolution during high energy ball milling of the nano powder occurred faster than that of the micron powder. A slight shift in the position of X-ray diffraction peaks was observed in nano Al-powders but it was un-altered in macro Al-powders. The variation in lattice parameters was observed only for nano Al powders during the high energy ball milling due to lattice distortion.

Open access

J.Y. Han, O.E. Femi, F. Kilicaslan, C.U. Jeong, C.H. Baeg, S.J. Hong and J.M. Koo

Abstract

In this study, the mechanical properties of Al-Si alloys was improved by selecting higher Si content and avoiding distortion in Al-Si matrix by adding an extrusion process such that the fabrication processes casting and extrusion were in sequence. Cast billets were extruded at ratios 4:1 and 10:1 to obtained two extruded bars with different processing parameters. The as-extruded samples were characterized and investigated for microstructure and mechanical properties. Optical Microscope was used to examined phase morphologies and microstructures of the extruded Al-Si bars. Mechanical properties were conducted on each sample to study the effectiveness of the additional extrusion process in high Si content Al-Si alloys. The result shows that by increasing the extrusion ratio, the size of the primary Si particle reduces leading to a higher density, better tensile and yield strength compared to the cast billet.

Open access

J.H. Hong, X.J. Liu, D.K. Park, K.W. Kim, H.J. Ahn and I.S. Ahn

Abstract

With the increasing demand for efficient and economic energy storage, tin disulfide (SnS2), as one of the most attractive anode candidates for the next generation high-energy rechargeable Li-ion battery, have been paid more and more attention because of its high theoretical energy density and cost effectiveness. In this study, a new, simple and effective process, mechanical alloying (MA), has been developed for preparing fine anode material tin disulfides, in which ammonium chloride (AC), referred to as process control agents (PCAs), were used to prevent excessive cold-welding and accelerate the synthesis rates to some extent. Meanwhile, in order to decrease the mean size of SnS2 powder particles and improve the contact areas between the active materials, wet milling process was also conducted with normal hexane (NH) as a solvent PCA. The prepared powders were both characterized by X-ray diffraction, Field emission-scanning electron microscopeand particle size analyzer. Finally, electrochemical measurements for Li/SnS2 cells were takenat room temperature, using a two-electrode cell assembled in an argon-filled glove box and the electrolyte of 1M LiPF6 in a mixture of ethylene carbonate(EC)/dimethylcarbonate (DMC)/ethylene methyl carbonate (EMC) (volume ratio of 1:1:1).

Open access

R.M. Raihanuzzaman, H.Y. Park, R. Ghomashchi, T.H. Kwon, H.-T. Son and S.J. Hong

Abstract

Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC) and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case) in the sintered bulks compared to other general processes (about 18%). While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.