Search Results

You are looking at 1 - 4 of 4 items for

  • Author: S. Roskosz x
Clear All Modify Search
Open access

S. Roskosz

Abstract

The aim of this paper is an assessment of the influence of hot isostatic pressing treatment on porosity of cast samples - turbine blades and vane clusters made of the IN713C superalloy. Two variants of HIP treatments, differing in pressure from each other, have been used.

The quantitative evaluation of the porosity was performed using light microscopy and quantitative metallography methods.

The use of the hot isostatic pressing significantly decreased the volume fraction and size of pores in the test blades, the remaining pores after the HIP process being characterized by a round shape. The increased pressure has caused significant reductions in the area fraction and size of the pores.

Open access

B. Kościelniak, S. Roskosz and J. Cwajna

Abstract

The IN713C is nickel-based superalloy, used to produce low pressure turbine blades in a process of investment casting. However, porosity which is formed during the casting, decreases mechanical properties of IN713C. Therefore, to eliminate porosity, a process of hot isostatic pressing was applied. Nonetheless, HIP also least to some changes in the microstructure of tested material. The main aim of this paper is to characterize the morphology of carbides before and after hot isostatic pressing. Microstructural characterization was carried out with the use of a scanning electron microscope equipped with an energy dispersive X-ray spectrometer and an electron backscatter diffraction detector. The size and shape of carbides were evaluated by quantitative metallography methods methods. The results show that the amount, size and heterogeneity of arrangement of the carbides increased after application of HIP treatment.

Open access

F. Binczyk, J. Cwajna, S. Roskosz and P. Gradoń

Abstract

The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc.), which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines), it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

Open access

Ł. Madej, M. Mojżeszko, J. Chrapoński, S. Roskosz and J. Cwajna

Abstract

Development of the Digital Material Representation (DMR) model, based on 3D reconstruction algorithm and serial sectioning, is the main goal of the present paper. Details on the serial sectioning and image processing algorithms are presented first. Serial sectioning is realized on the basis of light microscopy (LM). Then concept of 3D reconstruction and developed algorithms are presented. Two approaches, based on shape coefficients and the flood fill algorithms, are developed to identify corresponding features on subsequent 2D images. Then, the interpolation algorithm to reconstruct 3D volume between 2D images is presented. Finally, obtained 3D model is an input for finite element mesh generation software for subsequent finite element calculations.