Search Results

You are looking at 1 - 3 of 3 items for

  • Author: S. Rajashabala x
Clear All Modify Search
Open access

A. Kavitha, R. Kannan and S. Rajashabala

Abstract

The present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode) and without (diode mode) supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W) on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2) plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W). The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W).

Open access

A.J. Nagajothi, R. Kannan and S. Rajashabala

Abstract

Chitosan has been successfully incorporated as a filler in a polyethylene oxide (PEO) and lithium trifluoromethanesulfonate (LiCF3SO3) matrix with a combination of plasticizers, namely 1,3-dioxolane (DIOX) and tetraethylene glycol dimethylether (TEGDME). The composite gel-polymer electrolyte (CGPE) membranes were prepared by solution casting technique in an argon atmosphere. The prepared membranes were subjected to SEM, TG/DTA and FT-IR analyses. A Li/CGPE/Li symmetric cell was assembled and the variation of interfacial resistance was measured as a function of time. The lithium transference number (Li+ t) was measured and the value was calculated as 0.6 which is sufficient for battery applications. The electrochemical stability window of the sample was studied by linear sweep voltammetry and the polymer electrolyte was found to be stable up to 5.2 V.

Open access

K. Sainul Abidin, R. Kannan, P. Bahavan Palani and S. Rajashabala

Abstract

Proton exchange membranes have been synthesized from polyimide (PI) doped with different contents of montmorillonite (MMT) which was obtained by solution casting technique. The enhancement of conductivity was achieved through modification with the MMT. Prepared membranes were systematically characterized in terms of ion exchange capacity, water uptake, methanol uptake, swelling behavior and proton conductivity. Fourier transform infrared spectroscopy and X-ray diffraction measurements were used to confirm the structures of the PI/MMT composite electrolyte membranes. SEM surface morphological images of the composite membranes showed that the MMT nanoclay particles were dispersed uniformly within the membrane what was also reflected in XRD results which indicated a good compatibility of MMT particles with the polymer complex. The TGA spectra showed that the thermal stability of the membrane was reduced by adding MMT into the polymer network. The prepared membrane with 10 wt.% of modified MMT exhibited the highest proton conductivity value of 7.06 × 10-2 S·cm-1 at 70 °C. These results imply the potential application of the PI/MMT composite membranes as improved PEMs for DMFC applications.