Search Results

1 - 6 of 6 items

  • Author: S. Gopinath x
Clear All Modify Search
Optimised Mix Design for Normal Strength and High Performance Concrete Using Particle Packing Method

Abstract

This paper presents the details of optimized mix design for normal strength and high performance concrete using particle packing method. A critical review of mix design methods have been carried out for normal strength concrete using American Concrete Institute (ACI) and Bureau of Indian Standards (BIS) methods highlighting the similarities and differences towards attaining a particular design compressive strength. Mix design for M30 and M40 grades of concrete have been carried out using ACI, BIS and particle packing methods. Optimization of concrete mix has been carried out by means of particle packing method using EMMA software, which employs modified Anderson curve to adjust the main proportions. Compressive strength is evaluated for the adjusted proportions and it is observed that the mixes designed by particle packing method estimates compressive strength closer to design compressive strength. Further, particle packing method has been employed to optimize the ingredients of high performance concrete and experiments have been carried out to check the design adequacy of the desired concrete compressive strength.

Open access
Real-Time Thermal Mapping for Heat & Cool Archipelagos of Bengaluru, India

Abstract

Blessed with a salubrious climate, the city of Bengaluru over the past few decades has constantly witnessed thermal discomfort owing to several Urban Heat islands that have mushroomed within the city. The subsequent increase in builtup area, consequent loss of productive agricultural lands/green zones, encroachment of surface water bodies coupled with the ill-preparedness of decision makers to handle the demand for land have invariably crumbled the natural micro-climate of the city. In this present research, an attempt has been made to detect the distribution of Urban Heat Islands in Bengaluru City by conducting real-time survey at 100 observatories marked across the entire urban & rural locations; with thermohygrometers as per the W.M.O. guidelines. The study confirmed the violation of the Human Thermal Comfort Range in 9, 83, 98, 99, 98 and 80 observatories for the monitoring at 6 AM, 9 AM, 12 PM, 3 PM, 6 PM and 9 PM respectively.

Open access
Trilateral Trust Based Defense Mechanism against DDoS Attacks in Cloud Computing Environment

Abstract

Distributed Denial of Service (DDoS) in a Cloud leads to a high rate of overload conditions, which subverts the Data Center (DC) performance and ends up in resource unavailability. This work proposes a “Trilateral Trust mechanism” which helps in detecting different kinds of attack groups at different points of time. It is the direct trust based defense mechanism for segregating legitimate and attack groups from the vast number of incoming requestors. It is a hybrid mechanism of trusts that follows the zero trust approach initially and eventually supports both Mutual trust and Momentary trust. This combinatorial trust mechanism helps in detecting almost all kinds of overload conditions at a cautionary period. Detecting the high rate of an attack at an earlier moment of time could reduce the traffic impact towards DC. The simulation results and profit analysis proved that the mechanism proposed is deployable at an attack-prone DC for resource protection, which would eventually benefit the DC economically as well.

Open access
Effect of Nano Silica on Mechanical Properties and Durability of Normal Strength Concrete

Abstract

Nano technology is an emerging field of interest for civil engineering application. Among the nano materials presently used in concrete, nano-silica possess more pozzolanic nature. It has the capability to react with the free lime during the cement hydration and forms additional C-S-H gel giving strength, impermeability and durability to concrete. Present paper investigates the effects of addition of nano silica in normal strength concrete. Three types of nano-silica in the form of nano suspension having different amount of silica content have been investigated. Mix design has been carried out by using particle packing method. X-Ray diffraction (XRD) analysis has been carried out to find the chemical composition of control concrete and nano modified concrete. Further, experimental investigations have been carried out to characterize the mechanical behaviour in compression, tension and flexure. It has been observed that the addition of nano-silica in normal strength concrete increased the compressive strength and decreased the spilt tensile strength and flexural strength. Also, Rapid chloride permeability test (RCPT) has been conducted to know the chloride permeability of control concrete, nano modified concrete, and nano coated concrete. It has been observed that the chloride permeability is less for nano coated concrete.

Open access
Synthesis of SiC nanowhiskers from graphite and silica by microwave heating

Abstract

Silicon carbide (SiC) is an important ceramics for engineering and industrial applications due to its advantage to withstand in high temperatures. In this article, a demonstration of SiC nanowhiskers synthesis by using microwave heating has been shown. The mixtures of raw materials in the form of pellets were heated, using a laboratory microwave furnace, to 1400 °C for 40 minutes at a heating rate of 20 °C/min. The characterization process proved that the mixture of graphite and silica in the ratio of 1:3 is an ideal composition for synthesizing single phase β-SiC nanowhiskers. Vapor-solid mechanism was suggested to explain the formation of SiC nanowhiskers by the proposed microwave heating.

Open access
Fabrication of Cu2O Nanostructured Thin Film by Anodizing

Abstract

Cuprous oxide, a narrow bandgap p-type semiconductor, has been known as a potential material for applications in supercapacitors, hydrogen production, sensors, and energy conversion due to its properties such as non-toxicity, easy availability, cost effectiveness, high absorption coefficient in the visible region and large minority carriers diffusion length. In this study, Cu2O nanostructured thin film was fabricated by anodizing of Cu plates in ethylene glycol containing 0.15 M KOH, 0.1 M NH4F and 3 wt.% deionized water. The effects of anodizing voltage and temperature of electrolyte were investigated and reported. It was found that nanoporous Cu2O thin film was formed when anodizing voltages of 50 V and 70 V were used while a dense Cu2O thin film was formed due to the aggregation of smaller nanoparticles when 30 V anodizing voltage was used. Nanoplatelets thin film was formed when the temperature of electrolyte was reduced to 15 °C and 5 °C. X-ray diffraction confirmed the presence of Cu2O phase in thin film formed during anodizing of Cu plates, regardless of the anodizing voltage and temperature of electrolyte. Photoluminescence spectroscopy showed the presence of Cu2O peak at 630 nm corresponding to band gap of 1.97 eV. A mechanism of the formation of Cu2O thin film was proposed. This study reported the ease of tailoring Cu2O nanostructures of different morphologies using anodizing that may help widen the applications of this material

Open access