Search Results

1 - 6 of 6 items

  • Author: Ryszard Jasiński x
Clear All Modify Search

Problems of the starting and operating of hydraulic units and systems in low ambient temperature (Part I)

Severe winters and sweltering summers which more and more often occur nowadays are the reason why machinery designers face many difficulties when designing devices which will be serviceable in extreme ambient conditions. Hence, defining the principles and conditions of safe operation of hydraulically driven machines and devices is essential for their designers and operators. For this reasons the author did a series of tests of hydraulic component and systems in thermal shock conditions (cooled-down component were supplied with hot working medium). In such conditions, starting parameters of the selected hydraulic component and systems which secured safety of their operation were determined. The experimental tests were carried out in the laboratory of the Chair of Hydraulics and Pneumatics, Gdańsk University of Technology.

Problems of the starting and operating of hydraulic components and systems in low ambient temperature: Part II Determining the clearance between cooperating elements during the hydraulic components start-up in extremely low ambient temperatures on the grounds of experimental research

Severe winters and sweltering summers which more and more often occur nowadays are the reason why machinery designers face many difficulties when designing devices which will be serviceable in extreme ambient conditions. Hence, defining the principles and conditions of safe operation of hydraulically driven machines and devices is essential for their designers and operators. For this reasons the author did a series of tests of hydraulic component and systems in thermal shock conditions (cooled-down components were supplied with hot working medium). The experimental tests were carried out in the laboratory of the Chair of Hydraulics and Pneumatics, Gdańsk University of Technology. They gave answer to the question how the effective clearance changes in such conditions and what parameters it depends on. Based on temperature graphs acquired from tests of heating up elements of hydraulic components it is possible to determine precisely change of clearance between cooperating elements.

Problems of the starting and operating of hydraulic components and systems in low ambient temperature

More and more intensive technology development makes it possible to produce modern hydraulically driven devices which secure high reliability of operation in various conditions. To design such devices, investigations are performed, including experimental tests, which are very expensive and time consuming. In the design process of a new hydraulically driven machine or system, designers frequently have to solve problems concerning its operation in different weather conditions, for instance in low ambient temperatures. Due to the complexity of the phenomena of concern, the serviceability of the designed hydraulic component or system in those conditions is most frequently assessed based on numerical calculations, much cheaper than the experiments. The article presents three methods: experimental, analytical, and that based on computer simulation, applied for assessing the serviceability of cold hydraulic components supplied with hot working medium being a source of a so-called thermal shock.

Abstract

Designers of hydraulically driven machines and devices are obliged to ensure during design process their high service life with taking into account their operational conditions. Some of the machines may be started in low ambient temperature and even in thermal shock conditions (due to delivering hot working medium to cold components). In order to put such devices into operation appropriate investigations, including experimental ones - usually very expensive and time-consuming, are carried out. For this reason numerical calculations can be used to determine serviceability of a hydraulic component or system operating in thermal shock conditions. Application of numerical calculation methods is much less expensive in comparison to experimental ones. This paper presents a numerical calculation method which makes it possible to solve issues of heat exchange in elements of investigated hydraulic components by using finite elements method. For performing the simulations the following data are necessary: ambient temperature, oil temperature, heat transfer coefficient between oil and surfaces of elements, as well as areas of surfaces being in contact with oil. By means of computer simulation method values of clearance between cooperating elements as well as ranges of parameters of correct and incorrect operation of hydraulic components have been determined. In this paper results of computer simulation of some experimentally tested hydraulic components such as axial piston pump and proportional spool valve, are presented. The computer simulation results were compared with the experimental ones and high conformity was obtained.

Abstract

A large number of hydraulic devices and systems are started in low ambient temperatures. A good example of such a device is the hoisting winch on the ship. Starting hydraulic drive units in thermal shock conditions (rapid supply of hot oil to the cold unit) may lead to incorrect operation of the actuating system, for instance, due to the loss of clearance between cooperating elements. The article presents methods to prevent the disappearance of effective clearance in a hydraulic motor started in thermal shock conditions. For this reason, the structure of the hydraulic satellite motor was complemented by elements creating special channels through which hot oil could flow and additionally heat fixed parts of the motor. This solution ensures faster heating of motor housing, thus decreasing the temperature difference between the housing and the satellites during motor start-up in thermal shock conditions.

Abstract

Nordic walking and water aerobics are very popular forms of physical activity in the elderly population. The aim of the study was to evaluate the influence of regular health training on the venous blood flow in lower extremities and body composition in women over 50 years old. Twenty-four women of mean age 57.9 (± 3.43) years, randomly divided into three groups (Nordic walking, water aerobics, and non-training), participated in the study. The training lasted 8 weeks, with one-hour sessions twice a week. Dietary habits were not changed. Before and after training vein refilling time and the function of the venous pump of the lower extremities were measured by photoplethysmography. Body composition was determined by bioelectrical impedance. Eight weeks of Nordic walking training improved the venous blood flow in lower extremities and normalized body composition in the direction of reducing chronic venous disorder risk factors. The average values of the refilling time variable (p = 0.04, p = 0.02, respectively) decreased in both the right and the left leg. After training a statistically significant increase in the venous pump function index was found only in the right leg (p = 0.04). A significant increase in fat-free mass, body cell mass and total body water was observed (p = 0.01), whereas body mass, the body mass index, and body fat decreased (p < 0.03). With regard to water aerobic training, no similar changes in the functions of the venous system or body composition were observed.