Search Results

1 - 2 of 2 items

  • Author: Rodouan Touti x
Clear All Modify Search


The main objective of our work is to measure 238U, 232Th, 222Rn and 220Rn in different table oil samples using a method based on the use of two types of solid nuclear track detectors: CR- 39 and LR-115 II in order to determine the doses of radiation received by the individuals following ingestion of the samples of table oil studied. Indeed, we have developed an original method based on the determination of the detection efficiencies of CR-39 and LR-115 II solid nuclear track detectors for alpha particles emitted from the uranium 238 and thorium 232 series to evaluate 238U, 232Th, 222Rn and 220Rn concentrations in different table oil samples. We were able to determine doses of radiation due to 238U, 232Th and 222Rn received by individuals of the Moroccan, French, Italy, Spain and Tunisia populations following the ingestion of table oil.

The effective doses committed due to 238U, 232Th, and 222Rn following the ingestion of the table oil by the consumers were determined. The maximum total committed effective dose was found equal to (10±0.7) µSv·y−1 of the Moroccan population, (11.6±0.7) µSv·y−1 of the French population, (10.3±0.7) µSv.y−1 of the Italian population, (10.4±0.5) µSv·y−1 of the Spanish population and (10.5±0.7) µSv·y−1 of the Tunisian population is much lower than the average dose given by the United Nations Scientific Committee on the Effects of Atomic Radiation [1] for ingestion (0.2 to 0.8 mSv·y−1). The results obtained using our method are in very good agreement with those obtained using the model of the International Commission on Radiological Protection


In this work, we used CR-39 and LR-115 type II solid-state nuclear track detectors to measure 238U, 232Th,222Rn and 220Rn concentrations in Merzouga sand. The measured concentrations of 238U and 232Th in the studied sand samples vary from (332.59±16.62) mBq·cm−3 to (335.54±20.13) mBq·cm−3 and (80.43±4.02) mBq·cm−3 to (84.75±5.08) mBq·cm−3, respectively. We evaluated the radiation doses to the skin from the application of different sand baths by the patients by using a model based on specific alpha-dose and alpha-particle residual energy concepts. The maximum total equivalent dose to the skin due to the 238U and 232Th series from the cutaneous application of different sand baths by patients was found equal to (148.12±11.85) µSv y−1cm−2